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The benefits of inventory risk pooling are well known and documented. It has been proven in the literature
that the expected costs of a centralized system are increasing in the degree of (positive) dependence of

demand in an idealized newsvendor setting. Using the supermodular stochastic order to characterize depen-
dence, we study a general two-tiered supply chain structure, in which both demand and supply yields are
random, and prove that the expected costs are increasing in the degrees of positive dependence between demand
and supply yield loss factors. Furthermore, using a distributionally robust optimization framework, we prove
an analogous result for the case where demand and yield distributions are not precisely known.
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1. Introduction
Demand uncertainty has long been the focus of
research in supply chain management. A well-known
strategy to guard against demand uncertainty is
inventory risk pooling, first studied by Eppen (1979).
In the newsvendor problem, pooling results in a
smaller optimal total stocking quantity, while main-
taining the same probability of meeting demand that
balances underage and overage costs, and leads to a
reduction in the overall expected costs. Following this
work, the benefits of inventory pooling have since
been well studied in the literature. One focus of the
line of research is on how the benefits of pooling
depend on demand variability. Eppen (1979) proves
that, if demand follows a multivariate Gaussian dis-
tribution, then the benefits of pooling are increasing
in demand variability. However, this relationship does
not necessarily hold under general demand distribu-
tions (see, e.g., Benjaafar et al. 2005, Berman et al.
2011, Gerchak and He 2003).

There have been relatively fewer known results on
the effect of demand correlation (or more generally,
dependence) compared with those on demand vari-
ability. Because inventory sharing is only possible for
products of closely substitutable nature, it is natu-
ral that candidate demand sources for pooling, e.g.,
for the same product at different outlets of a retail
chain, are (positively) dependent to some degree.
Eppen’s (1979) result also implies that the value of

pooling is decreasing in pairwise correlations between
components of Gaussian demand vectors. This result
was generalized by Corbett and Rajaram (2006), who
prove that the expected costs of the pooled sys-
tem are increasing in the degree of positive depen-
dence between demands at different locations. In
these works, pooling is achieved by holding inventory
at a central location that serves all demand sources.
However, in the information-rich era, inventory shar-
ing is often enabled by informational pooling. For
example, IBM’s service parts system flexibly allocates
orders to stocking locations within a certain radius of
the customer’s location (Gresh and Kelton 2003). Sim-
ilar arrangements are common for online retailers (Xu
et al. 2009). Supply routing (Foreman et al. 2010) and
the well-studied lateral transshipment strategy (see,
e.g., Robinson 1990, Zhang 2005) are also common
informational pooling arrangements.

Besides demand uncertainty, supply uncertainty
has been a recent research focus, because of its sig-
nificance as illustrated by supply chain disruptions
following events such as Hurricane Katrina and the
2011 Japanese earthquake. It has been shown that the
optimal supply chain strategies can be different under
demand and supply uncertainties (e.g., Snyder and
Shen 2006, Tomlin 2006). Where supply or disruption
risks are present, the capability to share inventory
at different locations via informational pooling helps
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strike a balance between risk pooling and risk diver-
sification (Mak and Shen 2012).

Despite a significant stream of literature on the
operations and control of informational pooling, only
a handful of formal results regarding the impact of
demand dependence on these strategies are available.
Zhang (2005) proves that the expected costs of a trans-
shipment problem with identical retailers are increas-
ing in demand dependence, by establishing a connec-
tion with the newsvendor problem. Van Mieghem and
Rudi (2002) consider a general class of newsvendor
network problems that generalize multidimensional
newsvendor problems to incorporate resource capac-
ity investment considerations and discretionary activ-
ities. They provide a result that, assuming demand
follows a Gaussian distribution and the optimal profit
is a submodular function of realized demand, the
expected profit is decreasing in pairwise correlation of
demand. These works motivate our quest for analyti-
cal results that are more general in terms of the form
of inventory sharing and/or the demand (and in our
case, yield) distributions. In this paper, we utilize the
concepts of stochastic ordering and distributionally
robust optimization in developing our results. The
idea behind our analysis is to show that the cost func-
tion of the supply chain problem is supermodular,
which suggests that demand and yield loss realiza-
tions have complementary contributions to total costs.
Then, by using concepts of supermodular stochastic
orders and distributionally robust optimization, we
show that the expected costs of the system increase
with demand (and yield) dependence under differ-
ent settings, and that the largest (worst) possible
expected costs arise from a joint distribution with per-
fect dependence. We begin by discussing the technical
concepts that will be used later.

2. Preliminaries
A supermodular function can be defined as follows
(Topkis 1998).

Definition 1. A function f 2 �n → � is supermod-
ular if f 4x ∨ y5 + f 4x ∧ y5 ≥ f 4x5 + f 4y5, where x ∨ y
and x∧y are the componentwise maximum and min-
imum, respectively, of x and y.

For a supermodular function, the marginal impact
of an input parameter on the function value increases
in the other input parameters. Therefore, the input
parameters are complements for increasing the func-
tion value. Next, the supermodular stochastic order is
defined as follows (Shaked and Shanthikumar 2007).

Definition 2. Let X̃ and Ỹ be two n-dimensional
random vectors. If E6�4X̃57 ≥ E6�4Ỹ57 for all super-
modular functions �2 �n → �, provided the expecta-
tions exist, then, X̃ is said to be larger than Ỹ under
the supermodular order (denoted by X̃�sm Ỹ).

The interpretation of the supermodular order is
that, as the input arguments of supermodular func-
tions carry complementary effects, the function value
tends to be more extreme as the input arguments
vary in the same direction. Therefore, when a ran-
dom vector has positively dependent components,
the expected value of any supermodular function
that takes its components as arguments tends to
increase. In the literature, various properties of the
supermodular order have been studied. For exam-
ple, Joe (1990) studies its relationship with the weaker
dependence measure of concordance stochastic order.
Shaked and Shanthikumar (1997) study in depth
the properties of the supermodular order, includ-
ing its closure under various operations. Müller and
Scarsini (2000) prove that the supermodular order
satisfies the nine axioms for a multivariate positive
dependence order (Joe 1997). Furthermore, it is also
known that X̃�sm Ỹ implies �X̃ ≥ �Ỹ, �X̃ ≥ �Ỹ, and qX̃ ≥

qỸ (Joe 1990, Shaked and Shanthikumar 2007), where
�4·5, �4·5, and q4·5 denote Kendall’s � , Spearman’s �, and
Blomqvist’s q, respectively, all of which are common
correlation measures of the corresponding random
variables. The results discussed in the above refer-
ences suggest that the supermodular order is a desir-
able characterization of positive dependence. For the
commonly used Gaussian distributions, the following
holds:

Example 1. Let X̃ and Ỹ be two Gaussian random
variables with the same marginal means and marginal
variances. Let the correlation matrices of X̃ and Ỹ
be denoted by èX̃ and èỸ, respectively. If èX̃ ≥ èỸ

component-wise, then X̃ is larger than Ỹ under the
supermodular order.

We also note that, for random vectors with equal
dimensions, the supermodular order also implies the
sum-convex order, which is proposed by Corbett and
Rajaram (2006) to characterize dependence of demand
in multidimensional newsvendor settings.

Definition 3. Let X̃= 4X̃11X̃210001X̃n5 and Ỹ = 4Ỹ11
Ỹ21 0 0 0 1 Ỹm5 be two random vectors. If E6�4

∑n
k=1 X̃k57≥

E6�4
∑m

k=1 Ỹk57 for all univariate convex functions �4 · 5,
provided the expectations exist, then, X̃ is said to be
larger than Ỹ under the sum-convex order (denoted
by X̃�scx Ỹ).

Example 2. Let X̃ and Ỹ be two n-dimensional ran-
dom vectors such that X̃�sm Ỹ. Then, X̃�scx Ỹ.

One can check that many of the properties imply-
ing the sum-convex order discussed in Corbett and
Rajaram (2006), in fact, imply the supermodular order
as well. For example, following the proof of Propo-
sition 5 in Corbett and Rajaram (2006), Example 1
can be generalized to cases where the random vectors
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have general marginal distributions and dependence
structures that can be completely characterized by the
correlation matrices of some monotonic transforma-
tions of X̃ and Ỹ, i.e., with the normal copula (see,
e.g., Clemen and Reilly 1999 for more in-depth dis-
cussion of copulas). Finally, we note that two random
vectors that can be ranked using the supermodular
order must belong to the same Fréchet class, defined
as follows:

Definition 4. Let 8F11 0 0 0 1 Fn9 be a set of given
marginal distributions. Its Fréchet class is given by the
set of all n-dimensional joint distributions F with the
given marginal distributions.

Within a Fréchet class, there exists a largest element,
defined as follows:

Definition 5. For any distribution F in the Fréchet
class of 8F11 0 0 0 1 Fn9, it holds that F4u5 ≤ F̄4u5 =

min8F14u151 0 0 0 1 Fn4un59, for any u= 4u11 0 0 0 1un5 in the
domain of F. The distribution function F̄4u5 is an ele-
ment of the same Fréchet class and is known as the
Fréchet upper bound.

The Fréchet upper bound specifies a dependence
structure that is known as comonotonic in the literature
(e.g., Dhaene and Denuit 1999). Under this depen-
dence structure, all components of the random vector
varies in the same direction, i.e., they are perfectly
positively dependent. More precisely, there exists a
common univariate uniform 60117 random variable Û
such that Ũi = F −1

i 4Û 5 for all i = 11 0 0 0 1n.

3. Supply Chain Network with
Inventory Sharing

Consider a two-tiered supply chain consisting of
two layers of facilities. Let I = 811 0 0 0 1M9 denote a
set of upstream facilities (e.g., distribution centers),
J = 811 0 0 0 1N 9 denote a set of downstream facili-
ties (e.g., retailers), and E ⊆ I × J denote the set of
edges (e.g., shipping routes) between the two types
of facilities. Each upstream facility i ∈ I orders an
inventory of yi. We assume that the order quan-
tity vector y = 4y11y21 0 0 0 1 yM 5 is selected from a
set Y ⊆ �M

+
before uncertainty in demand and sup-

ply is realized. We impose no restrictions on the
set Y, such that, for example, there can be min-
imum and maximum order sizes, and the inven-
tory levels can be optimized or fixed. Because
of imperfect reliability of suppliers, we assume
that the facility i receives a quantity of yi41 − ã̃i5,
where ã̃i (∈ 60117) is a random variable referred
to as the yield loss factor. Each downstream facil-
ity j ∈ J faces stochastic external demand of D̃j . Let
Ũ denote the vector 8Ũ11 0 0 0 1 ŨM1 ŨM+11 0 0 0 1 ŨM+N 9 =

8ã̃11 0 0 0 1 ã̃M1 D̃11 0 0 0 1 D̃N 9, which follows some multi-
variate distribution F. After demand and supply yield
loss factors are realized (we use u to denote a real-
ization of Ũ), the firm decides the quantity wij of
inventory at upstream facility i to be used to satisfy
demand at any j to which it is connected, i.e., 4i1 j5 ∈

E, incurring a shipping cost of cij . Any unmet demand
at j , denoted by sj , incurs an underage cost of pj per
unit; any leftover inventory at i, denoted by xi, incurs
an overage cost of hi per unit. The total shipping,
overage, and underage costs of the supply chain can
be written as H4y1u5, defined as the optimal objective
value of the following linear program:

min
s1x1w≥0

∑

i1 j2 4i1 j5∈E

cijwij +
∑

j∈J

pjsj +
∑

i∈I

hixi (1)

subject to xi +
∑

j∈J 2 4i1 j5∈E

wij = 41 −ui5yi

for each i = 11 0 0 0 1M1 (2)
∑

i∈I 2 4i1 j5∈E

wij + sj = uM+j

for each j = 11 0 0 0 1N 0 (3)

In the above, constraint (2) requires that inventory
at any upstream facility i is either shipped to some
downstream facility or held as leftovers. Similarly,
constraint (3) requires that demand at any down-
stream facility be either met by shipments from some
upstream facilities or unmet (incurring shortage). As
the above formulation gives the total costs given a
realization of demand, the expected total cost, under
a joint distribution F, can be obtained as EF6H4y1 Ũ57.

We note that the above model setting is quite
general and includes many possible inventory (and
capacity) sharing settings as special cases. We provide
a few examples below.

Example 3. The following classical settings can be
obtained as special cases of our model:

1. To obtain the classical risk-pooling setting stud-
ied by Eppen (1979), we may set I = 819, J =

811 0 0 0 1N 9, E = I × J , cij = 0 for all 4i1 j5 ∈ E and pj = p
for all j ∈ J .

2. To obtain the transshipment model studied by
Robinson (1990), we may set I = J = 811 0 0 0 1N 9, E =

I × I and cii = 0 for all i = 11 0 0 0 1M .
3. To obtain the chaining model of process flexi-

bility studied by Jordan and Graves (1995), we may
set I = J = 811 0 0 0 1N 9, E = 84i1 i+159i=110001N−1 ∪ 84N1159,
cij = 0 for all 4i1 j5 ∈ E, hi = 0 for all i = 11 0 0 0 1M and
pj = 1 for all j = 11 0 0 0 1N .

4. To obtain a two-tiered supply chain with a profit-
maximizing objective, in which the marginal revenue
of meeting each unit of demand at j is �̂j , the pur-
chase cost of each unit of delivered inventory at i is

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

40
.1

39
.1

67
] 

on
 1

1 
Se

pt
em

be
r 

20
14

, a
t 2

1:
02

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Mak and Shen: Pooling in Multiple-Location Inventory Systems
266 Manufacturing & Service Operations Management 16(2), pp. 263–269, © 2014 INFORMS

�̂i, the unit shipping cost from i to j is ĉij , and the
unit salvage value for unsold leftover inventory at i
the end of horizon is v̂i (< �̂i), we may set pj = �̂j ,
hi = �̂i − v̂i, and cij = �̂i + ĉij . Then, by substituting con-
straint (2), one can see that the objective of the profit-
maximizing problem is given by a constant minus the
objective of the cost-minimization problem:
∑

j∈J

�̂j4uM+j −sj5−
∑

i∈I

�̂i41−ui5yi+
∑

i∈I

v̂ixi−
∑

i1j24i1j5∈E

ĉijwij

=
∑

j∈J

�̂juM+j −

[

∑

i1j24i1j5∈E

cijwij +
∑

j∈J

pjsj +
∑

i∈I

hixi

]

0

5. To obtain a supply chain in which inventory is
held at both upstream and downstream facilities, we
can define, for each downstream facility j , an ancil-
lary upstream facility i such that shipping cost cij = 0,
and set hi equal to the overage cost at j . This is a
model for hybrid strategies where the inventory is
partially localized (at downstream facilities), partially
centralized (at upstream facilities), and can be flexibly
allocated in response to realization of uncertainty.

4. The Cost of Pooling
4.1. When Marginal Distributions Are Known
First, we consider the case where the marginal distri-
butions of Ũk, for k = 11 0 0 0 1M + N , are known and
are denoted by Fk. That is, we consider the Fréchet
class of 8Fk1 k = 11 0 0 0 1M + N9. First, we will gener-
alize the results of Corbett and Rajaram (2006) using
the supermodular stochastic order. To begin, we first
prove that the cost function of the two-tiered sup-
ply chain is supermodular. The proofs of all analytical
results are provided in the online supplement (avail-
able at http://dx.doi.org/10.1287/msom.2013.0469).

Lemma 1. The function H4y1u5 is supermodular in u.

The supermodular property implies that the
marginal cost of yield loss at one upstream facility
is increasing in the yield loss at any other upstream
facility and the realized demand at any downstream
facility. The marginal cost of observing extra demand
at any downstream facility is increasing in the real-
ized demand at any other downstream facility and
the yield loss at any upstream facility. We note that
a recent paper by Simchi-Levi and Wei (2012) also
utilizes a supermodular property to derive analytical
results for the process flexibility network. By estab-
lishing supermodularity of flexible production edges,
they answer important open questions in the liter-
ature, including providing a formal proof that the
chaining structure is indeed optimal among all two-
flexibility designs. In contrast, we develop under-
standing on the effect of the demand and supply
yield dependence on expected costs. Both applications

help illustrate the power of supermodularity theory
in developing understanding on supply chain (and
process flexibility) structures.

Lemma 1 provides the technical condition needed
to prove that the expected costs of the system increase
in positive dependence of demand and yield loss
factors. Intuitively, with a higher degree of demand
dependence, it becomes more likely that different
facilities observe high demand (yield loss) realizations
at the same time, or low demand (yield loss) realiza-
tions at the same time. Because the marginal cost of
extra demand (yield loss) at one facility is increas-
ing in the demand (yield loss) values of others due
to supermodularity, the expected costs is higher as
demand (yield loss) values vary in the same direc-
tion. To prove this formally, we use the supermodular
order to compare the degrees of positive dependence
of random demand vectors. Our main result follows:

Proposition 1. Consider two multivariate random
variables Ũ and Ũ′, where Ũ�sm Ũ′. Then,

min
y∈Y

E6H4y1 Ũ57≥ min
y∈Y

E6H4y1 Ũ′570

Proposition 1 is a generalization of the results of
Eppen (1979), Corbett and Rajaram (2006), and Zhang
(2005) to the general two-tiered supply chain set-
ting in the presence of demand and supply uncer-
tainty. Therefore, the benefits from informational and
physical pooling diminish as demands at down-
stream facilities and yield losses at upstream facili-
ties become more positively dependent. This holds
regardless of the form of pooling, e.g., whether inven-
tory is centralized at the same location, or trans-
shipped among stocking locations, or dynamically
rerouted from upstream to downstream facilities, and
whether or not efficiency losses (transportation costs)
are incurred.

Besides generalizing the classical result regard-
ing the relationship between pooling benefits and
demand dependence, Proposition 1 supports the
insight that risk diversification in the presence of sup-
ply uncertainty ought to be carried out in a way that
minimizes the positive dependence among yield loss
factors, e.g., by contracting with suppliers that do not
share common supply sources further upstream. Fur-
thermore, suppliers should be selected in a way that
minimizes dependence between demand and yield
loss factors. Such dependence may arise, for example,
from using a supplier with limited capacity. Under a
high demand scenario, other firms selling the same
product may scale up order quantities simultaneously,
which causes the supplier to ration the limited sup-
ply and reduce the resulting supply yield to each
individual firm. This result provides justification that
the trade-off between the benefits of inventory shar-
ing (informational or physical) and the cost to enable

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

40
.1

39
.1

67
] 

on
 1

1 
Se

pt
em

be
r 

20
14

, a
t 2

1:
02

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Mak and Shen: Pooling in Multiple-Location Inventory Systems
Manufacturing & Service Operations Management 16(2), pp. 263–269, © 2014 INFORMS 267

it (e.g., information technology infrastructure invest-
ments) can be altered by both the structure of supply
base as well as the nature of demand substitution.

The supermodular order is a general characteriza-
tion of dependence that can be used under many
distributions. For example, in problems where the
marginal demand distributions at individual locations
are nonnormal, and yet the dependence structure can
be characterized by the correlation matrix of a mono-
tonic transformation (i.e., the normal copula), our
result implies that the expected costs are increasing
in each element of the correlation matrix (following
the proof of Proposition 5 of Corbett and Rajaram
2006). Next, we provide a complementary result that
the largest possible expected costs are achieved by a
perfectly positively dependent joint distribution.

Proposition 2. For a supermodular function h4 · 52
�M+N → �, the joint distribution F̄ in the Fréchet class
of 8Fk1 k = 11 0 0 0 1M + N9 that maximizes EF6h4Ũ57 is
given by the Fréchet upper bound, given by F̄4u5 =

min8F14u151 0 0 0 1 FM+N 4uM+N 59.

By considering h4 · 5 = H4y1 ·5, Proposition 2 states
that, when the marginal distributions of demand
and yield loss factors are given, the comonotonic
dependence structure leads to the largest expected
cost. In the next section, we further show that these
insights hold even when the marginal distributions
are unknown.

4.2. When Partial Distributional
Information Is Known

Supply chain planners often have to work with new
markets, products, and suppliers for which demand
and yield data are limited. In such cases, fitting the
precise (even marginal) distributions and establish-
ing supermodular ordering relationships can be dif-
ficult. To tackle such problems, it is often assumed
in the distributionally robust optimization literature
that only descriptive statistics (e.g., supports, means,
and variances) of random variables, which are rel-
atively easier to estimate compared with fitting the
complete distribution, are available. Then, the planner
is assumed to be ambiguity averse and consider the
worst expected objective value within the set of pos-
sible distributions (the ambiguity set) with the given
descriptive statistics (e.g., Goh and Sim 2010).

Following this framework, we consider a model of
uncertainty in which the exact marginal distributions
of Ũi are unknown, and instead, partial distributional
information is given. For any positive integer k, let Qik

denote the kth marginal moment of Ũi. We also denote
the support of Ũi by Si. Let �= S1 ×· · ·×SM+N ⊂�M+N

+
.

We assume knowledge of the support � and some
marginal moments Qik for i = 11 0 0 0 1M + N and for
k ∈ K, where K is a finite set of positive integers. For

example, if K = 81129, the marginal means and second
moments (and thus variances) are known.

For this alternative setting, we prove a result analo-
gous to Proposition 2 that the worst-case distribution
is given by a Fréchet upper bound. To begin, we first
note that the worst-case expected value of any func-
tion h4Ũ5 can be obtained by solving the following
moment problem:

sup
F2 dF4 · 5≥0

∫

�
h4u5 dF4u5 (4)

subject to
∫

�
uk
i dF4u5=Qik1

for i = 11 0 0 0 1M +N1k ∈K1 (5)
∫

�
dF4u5= 10 (6)

In the above, the probability measure F4 · 5 is
selected to maximize the expected value of h4 · 5. Con-
straints (5)–(6) stipulate that the moments of this cho-
sen measure are equal to the given values, and the
measure is valid so that the probability that the asso-
ciated random variable lies in the support � is equal
to one. For any joint distribution satisfying these
constraints, the corresponding marginal distributions
Fi4 · 5 satisfy
∫

Si

uk
i dFi4ui5=Qik1 for i = 11 0 0 0 1M +N1k ∈K1 (7)

∫

Si

dFi4ui5= 10 (8)

Proposition 3. For a supermodular function h4 · 5,
the extremal distribution (i.e., optimal solution) to (4)
is a Fréchet upper bound. That is, it satisfies F4u5 =

min8F14u151 F24u251 0 0 0 1 FM+N 4uM+N 59, for some univari-
ate distributions F11 0 0 0 1 FM+N satisfying the moment con-
straints (7)–(8).

Substituting H4y1 Ũ5 in place of h4Ũ5, Proposi-
tion 3 states that the counterpart of Proposition 2
holds, i.e., the worst expected cost is achieved by a
comonotonic distribution, even under ambiguity on
the marginal distributions. Furthermore, besides ana-
lyzing the worst dependence structure under distri-
butional ambiguity, we are interested in showing the
monotonicity relationship, in line with Proposition 1,
between expected cost and dependence of demand
and supply yield under the ambiguity setting. To
this end, we consider the case where, in addition to
the marginal distributional information specified in
(5) and (6), the joint distribution F of Ũ also satisfies
a constraint that EF6g4Ũ57 is equal to a known value,
for a given supermodular function g4 · 5:

∫

�
g4u5 dF4u5= �0 (9)
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As discussed previously, the expected values of
supermodular functions of a random variable are
closely related to the dependence structure of the
components of the random variable. For example,
consider the function g4Ũ5=

∏

i=110001M+N gi4Ũi5, where
gi4 · 5 are nonnegative increasing functions (super-
modular by Corollary 2.6.3 of Topkis 1998). A special
case is g4Ũ5 = ŨiŨj , whose expected value E6ŨiŨj 7 is
the cross second moment (which gives the correlation
coefficient, given fixed means and variances) typically
used to measure positive dependence. It is also pos-
sible to consider g4Ũ5 to be any conic combination of
ŨiŨj for distinct i, j pairs, which is also a supermod-
ular function. This is equivalent to specifying a conic
combination of the correlation coefficients, given fixed
means and variances. Similarly, E6g4 · 57 can also rep-
resent other correlation measures such as Kendall’s
� or Spearman’s � (or conic combinations thereof)
by selecting an appropriate supermodular function.
Therefore, imposing the additional constraint (9) can
be interpreted as specifying the value of a generalized
cross moment of F that measures dependence. We also
make the following mild technical assumptions:

Assumption 1. The value of � is bounded above by
the value corresponding to any Fréchet upper bound,
i.e., � ≤

∫

� g4u5 dF̄4u5 for any F̄ satisfying F̄4u5 =

min8F14u151 F24u251 0 0 0 1 FP 4uM+N 59, for some F11 0 0 0 1 FP
satisfying the moment constraints (7)–(8) and dFi4ui5 ≥ 0
for i = 11 0 0 0 1M +N .

Assumption 2. The values of Qik for i = 11 0 0 0, M +N ,
k ∈K and� lie in the interior of the feasible set, i.e., the set
for which there exists valid distributions with correspond-
ing moment values.

Assumption 1 requires that the specified value
of generalized moment to be used for measuring
dependence cannot be even larger than what can be
achieved under a comonotonic distribution with the
given means and variances. This is a reasonable and
mild assumption, considering that comonotonic dis-
tributions are already perfectly dependent. One may
note that there exist comonotonic distributions under
which E6g4Ũ57 = 0 for g4Ũ5 = ŨiŨj , such as the case
where Ũj = 4Ũi5

2 and Ũi follows a normal marginal
distribution with zero mean. However, because the
support � is in the nonnegative orthant, such extreme
examples can be ruled out. Assumption 2 is a mild
Slater’s-type condition needed for ensuring strong
duality, and is commonly made in the analysis of
moment problems (Bertsimas and Popescu 2004). For
this alternative setting, we shall prove a result anal-
ogous to Proposition 1 that the worst-case expected
costs are increasing in �, which can be interpreted
as a measure of dependence. Similar to the previous

case, the ambiguity averse (worst-case) evaluation of
the expected costs can be obtained by solving

sup
F2 dF4 · 5≥0

∫

h4u5 dF4u5 (10)

subject to (5)–(6) and (9). By analyzing this distri-
butionally robust formulation, we prove the follow-
ing monotonicity result regarding its optimal objec-
tive value.

Proposition 4. The optimal objective value to problem
(10) is increasing in the value of �.

Substituting the supply chain cost function H4 · 5
in place of h4 · 5, Proposition 4 suggests that, for an
ambiguity-averse planner given only support and
moment information of demand and yield loss, the
worst-case expected costs of the supply chain are
increasing in a measure of positive dependence of
the random factors. The significance is that, in set-
tings such as entering new markets and contracting
with new suppliers, the same qualitative insight holds
even if one cannot confirm whether the supermodu-
lar stochastic order holds. Instead, one simply needs
to estimate some cross (generalized) moment E6g4 · 57
and consider the ambiguity-averse objective. It is
also interesting to consider different possible func-
tions g4 · 5 to use. Besides the cross second moments
(or conic combinations thereof), one may also sub-
stitute the cost function of another supply chain
network structure, which is supermodular following
Lemma 1, in place of g4 · 5. Then, Proposition 4 sug-
gests that the dependence structure exerts the same
directional effect on the worst-case expected costs of
different supply chain network configurations, such
that increasing the expected costs of one configuration
leads to an increase in any other.

5. Conclusion
We generalize the classical insights on the relationship
between the risk-pooling benefits and the dependence
of demand, due to Eppen (1979) and Corbett and
Rajaram (2006), to general two-tiered supply chains
with physical or informational pooling of inventory,
in the presence of both demand and supply uncer-
tainty, when demand and yield distributions can be
known or unknown. We extend the traditional model
by accounting for practical concerns such as the form
of inventory sharing, i.e., physical or informational
pooling, and the possible efficiency loss (e.g., extra
transportation cost) incurred. Besides, our result cov-
ers the case with random supply yields and points
out the importance of considering demand and sup-
ply dependence in supply chain network design. As
a direction for future study, it will be interesting
to develop further models to investigate conditions
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under which cost functions in inventory problems are
supermodular in demand and yield factors in general
(e.g., when the network structure is not a bipartite
graph), and the resulting implications.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/msom.2013.0469.
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