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In this paper, we develop distribution-free models that solve the appointment sequencing and scheduling
problem by assuming only moments information of job durations. We show that our min–max appointment

scheduling models, which minimize the worst-case expected waiting and overtime costs out of all probability
distributions with the given marginal moments, can be exactly formulated as tractable conic programs. These
formulations are obtained by exploiting hidden convexity of the problem. In the special case where only the first
two marginal moments are given, the problem can be reformulated as a second-order cone program. Based on the
structural properties of this formulation, under a mild condition, we derive the optimal time allowances in closed
form and prove that it is optimal to sequence jobs in increasing order of job duration variance. We also prove
similar results regarding the optimal time allowances and sequence for the case where only means and supports of
job durations are known.
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1. Introduction
In the healthcare industry, appointment scheduling
problems arise in numerous settings, such as scheduling
outpatient appointments in primary care and specialty
clinics, and scheduling surgeries for operating rooms.
Many appointment systems in healthcare involve the
following two-stage scheduling process. First, patients
and surgeons enter a preliminary booking stage, in
which they select preferred dates and time windows
for their appointments or surgeries. Second, given a
group of appointments booked within a day or within
a schedule block in the first stage, the planner has to
assign them to the various resources (e.g., different
operating rooms and surgeons) and determine their
planned starting times. This latter step is typically
performed a few days in advance of the appointment
dates. An important feature of appointment scheduling
problems is that durations of jobs (e.g., surgeries) are
typically not known in advance.

In this paper, we focus on the appointment schedul-
ing problem for a single resource arising from the latter
of the two planning stages discussed in the previous

paragraph. Given a set of jobs with random durations,
we have to determine their planned starting times.
Equivalently, we have to determine the sequence in
which to perform the jobs, and once the sequence is
fixed, we determine the time allowances for the jobs.
In the sequel, we refer to the determination of time
allowances and job sequence as the scheduling and
sequencing decisions, respectively. Correspondingly, we
refer to the problem of determining time allowances
for the jobs given a predetermined sequence as the
appointment scheduling problem, and the problem of
jointly determining the sequence and time allowances
as the appointment sequencing problem.

Because of the uncertainty of job durations, any
job can be completed before or after the planned
starting time of the subsequent job. Both possibilities
incur penalties, because these result in the resources
becoming idle or the subsequent job waiting to start.
Also, if the last job is completed after the due date (the
end of working hours of the day), the resources have
to work overtime, which is often quite costly. Therefore,
the key performance measures in the appointment
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scheduling problem are the waiting times of patients,
the idle times of resources (e.g., operating rooms and
surgeons), and the overtime.

In the literature, it is a common assumption that the
probability distribution of job durations is known to
the decision maker. This is a valid assumption in many
situations where there are sufficient data available, so
that fitting a distribution is possible. However, there is
evidence that the probability distribution of job dura-
tions can be hard to estimate in some circumstances,
because of the lack of data. For example, Denton et al.
(2007) find that there are, on average, only 21 data
points available per surgery type at Fletcher Allen
Health Care, a health center serving Vermont and
upstate New York. A quote from Macario (2010) further
shows that the amount of data broken down by surgery
types and surgeons is even more limited:

[F]or approximately half of the cases scheduled in
[operating rooms] in hospitals in the United States on
any given weekday, only 5 or fewer cases of the same
procedure type and by the same surgeon have been
performed during the preceding year.

Fitting distributions for stochastic planning requires
a large amount of data (see, e.g., the discussion by
Levi et al. 2012 regarding an inventory problem). On
the other hand, the data requirement for estimating
moments (see Delage and Ye 2010 for an excellent
discussion), although significant, is relatively less bur-
densome. This motivates us to study the appointment
sequencing and scheduling problem that uses only the
(marginal) moments information of the job durations.

Another motivation of our study is the intractability
of the appointment sequencing problem when the job
duration distribution is known. As to be discussed in
the literature review section, the appointment sequenc-
ing problem is very difficult to solve computationally.
Although a simple heuristic of sequencing jobs by
increasing order of variance (OV) is known to produce
good sequences, there has been no proof of its opti-
mality when the problem involves three or more jobs.
With a model of uncertainty in which the variabilities
of job durations are completely characterized by their
variances (i.e., when only the means and variances of
job durations are known), we shall prove that the OV
indeed produces the optimal sequence under reason-
able conditions. An analogous result is also proved for
the case where only the means and supports of job
durations are given.

In the remainder of this section, we first present the
mathematical model, briefly review the related litera-
ture, and then summarize our main results. We also
note that although we will focus on healthcare applica-
tions throughout this paper, appointment scheduling
problems have applications in other domains such
as scheduling cargo ships at a seaport (Sabria and
Daganzo 1989) and parts on a shop floor (Wang 1993).

1.1. The Model
We first formulate the stochastic appointment schedul-
ing problem when the sequence of jobs are given. There
are n jobs to be scheduled during a time interval 601 T 7.
The jobs need to be processed in a predetermined
sequence 1121 0 0 0 1n. We shall relax this assumption
and study the optimal sequence in §§3.3 and 4. Job i
requires a random service duration p̃i. Throughout this
paper, we use boldface notation to denote vectors. For
example, we use p̃ to denote (p̃11 0 0 0 1 p̃n). The planner
determines time allowances si for each job i. If job i
cannot be started at its planned start time due to a
delay of completion of the previous job, a waiting
time cost will be incurred per unit time of delay. We
normalize the unit waiting time cost for all jobs to 1.
Furthermore, if the last job is completed after time T ,
then an overtime cost of � is charged per unit time of
delay. We require the sum of time allowances to be
no larger than T , so that all jobs are scheduled to be
completed by time T ; that is, the feasible region of
s= 4s11 0 0 0 1 sn5 is given by the set

S=

{

s≥ 01
n
∑

i=1

si ≤ T

}

0

For notational brevity, we do not consider penalty for
idle time, which occurs whenever a job is completed
before the next job is scheduled to begin. We note that
the case with uniform idle time penalty costs can be
easily handled with a change of notation.

Given time allowances s and a realization of the
random service times, denoted by p, the waiting times
and the overtime can be computed recursively as
follows. Let Wi denote the waiting time of the ith job
(i = 11 0 0 0 1n), and let Wn+1 denote the overtime. Then
we have W1 = 0 and

Wi = max801Wi−1 +pi−1 −si−191 i = 21 0 0 0 1n+10 (1)

The total waiting and overtime cost is denoted by

f 4s1p5=

n
∑

i=2

Wi +�Wn+10 (2)

The random job durations p̃ follow a joint probability
distribution F . For any job i, the support of p̃i is denoted
by Di. Let �=D1 × · · · ×Dn. For any positive integer q,
the qth moment of p̃i is denoted by Miq . We also use
�i and �i to denote the mean and standard deviation
of p̃i, respectively; that is, Mi1 =�i and Mi2 =�2

i +�2
i .

The key assumption of our model is that the exact joint
distribution F is unknown to the planner. The only
information available to the planner is the support
� and some marginal moments Miq , for any job i=
1121 0 0 0 1 n, and for any q ∈Q where Q is a finite set of
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positive integers. More specifically, the distribution F
needs to satisfy the following constraints:

∫

�
dF 4p5= 11 (3)

∫

�
p
q
i dF 4p5=Miq for 1 ≤ i ≤ n1 q ∈Q1 (4)

dF 4p5≥ 0 for p ∈�0 (5)

We denote by F4�1Q5 the set of distributions that
satisfy the constraints (3)–(5).

Throughout this paper, we will make the following
rather mild technical assumption. It states that the
given marginal moments vector lies in the interior of
the set of all feasible moment vectors.

Assumption 1. For each job i, the vector 4Miq2 q ∈Q5
lies in the interior of the set 84

∫

Di
p
q
i dFi4pi52 q ∈Q5: Fi is a

probability distribution over support Di}.

When Q = 81129, Assumption 1 holds if Mi2 >M2
i1 or,

equivalently, �i > 0. For further discussions on Assump-
tion 1, we refer the interested readers to Bertsimas and
Popescu (2005).

We are now ready to formulate our appointment
scheduling model as the following min–max problem:

min
s∈S

max
F ∈F4�1Q5

EF 6f 4s1 p̃573 (6)

that is, we choose the time allowances s to minimize
the worst-case expected value of f 4s1 p̃5 among all
distributions in F4�1Q5.

Two special cases are of particular interest to us.
In the first case, Q = 81129 and �=�n; that is, only
the means and variances of individual job durations
are known. We refer to this version of problem (6) as
the mean-variance model throughout our paper. In the
second case, Q = 819 and Di = 6�i − di1�i + d̄i7, where d̄i
and di are strictly positive numbers for all i = 11 0 0 0 1 n;
that is, only the means and supports of individual
job durations are known. In this case, problem (6) is
referred to as the mean-support model.

1.2. Related Literature
Excellent surveys of appointment scheduling research
in health care are provided by Cayirli and Veral (2003)
and Gupta and Denton (2008). The classical healthcare
appointment scheduling problem assumes that the
probability distribution of job durations is given and
considers the objective of minimizing the expected
costs of waiting and idle times. Kaandorp and Koole
(2007) show that the expected cost function is L\-convex
in the planned start time variables when job dura-
tions are exponentially distributed, whereas Begen and
Queyranne (2011) prove the L\ convexity by assuming
general discrete distributions. Ge et al. (2013) extend
the result of Begen and Queyranne (2011) to the case

where the cost function can be written as piecewise
linear convex functions of waiting times and idle times.
By utilizing the result from Orlin (2010) and Murota
(2003), Begen and Queyranne (2011) show for the
first time that the appointment scheduling problem
is polynomial-time solvable. More specifically, they
propose an algorithm that requires O4n75 expected-cost
evaluations.

Sample average approximation (SAA) is a common
method used to solve the appointment scheduling
problem. Denton and Gupta (2003) solve the two-stage
stochastic linear programming formulation using an
L-shaped algorithm. Begen et al. (2012) show that
the number of samples required to achieve 41 + �5
multiplicative error bound with probability 41 − �5 is
O4n641/�45 ln4n/�55.

The existing algorithms based on L\ convexity involve
high-order, although polynomial, complexities. They
also require efficient means to evaluate the expected
cost given solution values, which may not be readily
available for general distributions. On the other hand,
SAA algorithms could also be computationally inten-
sive, and require knowledge of the precise distribution
of job durations, or at least access to sufficient num-
bers of independent samples. Moreover, incorporating
sequencing decisions could only make the problem
computationally less tractable.

Indeed, appointment sequencing seems to be an
extremely difficult problem. Weiss (1990) and Denton
et al. (2007) prove that sequencing jobs by OV is
optimal when there are two jobs and their durations
are independent. Because of the notable difficulty, most
existing works (Denton et al. 2007, Mancilla and Storer
2012, Mak et al. 2014) on the appointment sequencing
problem focus on the development of efficient heuristics
to obtain near-optimal sequences. Numerical studies in
these papers show that OV and its variants are effective
heuristics even when the number of jobs is more than
two. The intuition is that OV reduces the likelihood of
delays propagating down the schedule, by arranging
jobs with less variable durations in front.

With limited data available, it is often difficult to
fit the precise distributional form or obtain a large
number of independent samples as inputs to planning
models. One approach to address this issue is to for-
mulate robust optimization models, which make no
assumptions on probability distributions, but instead
specify uncertainty sets in which the uncertain parame-
ters (job durations in our context) lie. Decisions are
chosen against the worst-case scenarios among all
realizations of the uncertain parameters; see, for exam-
ple, Soyster (1973), Ben-Tal and Nemirovski (2000),
Bertsimas and Sim (2003), and Ben-Tal et al. (2009). For
the appointment scheduling problem, Mittal and Stiller
(2011) study a model where job durations lie in interval
uncertainty sets. They provide a heuristic to generate
time allowances that balance the maximal waiting costs

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

40
.1

39
.1

67
] 

on
 1

1 
Se

pt
em

be
r 

20
14

, a
t 2

0:
58

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Mak, Rong, and Zhang: Appointment Scheduling with Limited Distributional Information
4 Management Science, Articles in Advance, pp. 1–19, © 2014 INFORMS

and the maximal idle costs of jobs. They show that
such a heuristic is optimal (with respect to the robust
objective) when unit idle time costs are nondecreasing
in the job sequence. Their computational study reveals
that the expected cost of their robust optimal schedule
is typically within 20% of the expected cost of the
stochastic optimal solution given knowledge of the job
duration distributions.

Our min–max appointment scheduling model (6)
belongs to the class of distributionally robust optimiza-
tion models in the literature. These models assume
partial distributional information of the uncertain
parameters such as support and moments (mean, covari-
ance, etc.), and decisions are chosen to optimize the
worst-case expected objective value among all possible
distributions with the specified support and moments
information (Scarf 1958). Such models have been useful
for providing upper and lower bounds on expected
objective values of stochastic programs (Žáčková 1966,
Dupacova 1977, Ermoliev et al. 1985, Birge and Wets
1987, Prékopa 1988). More recently, there have been
efforts in formulating distributionally robust optimiza-
tion models as tractable conic programs (Bertsimas
et al. 2010, Goh and Sim 2010, Natarajan et al. 2011,
Chen et al. 2011, Zhu et al. 2013). For cases when the
moments are not precisely known, Delage and Ye (2010)
propose a model to incorporate confidence regions
for the moments rather than just to utilize their point
estimations.

One of the major tasks in the appointment schedul-
ing problem is to compute the expected completion
time of the last job, which shares common charac-
teristics with stochastic project scheduling problems
with random activity durations. A number of studies
(e.g., Meilijson and Nádas 1979; Klein Haneveld 1986;
Birge and Maddox 1995; Bertsimas et al. 2004, 2006)
utilize support and marginal moments information to
generate useful bounds on the expected completion
time and/or tardiness for stochastic project scheduling
problems.

The paper most relevant to ours is Kong et al. (2013).
Under the assumption of given mean, covariance
matrix, and nonnegative support of job durations,
they derive a copositive programming formulation for
the appointment scheduling problem. Although the
formulation is convex, it is not necessarily polynomial-
time solvable. The authors propose a semidefinite
programming relaxation as a solution approach. It is
notable that, by specifying the complete covariance
matrix, Kong et al. (2013) consider a cross-moment
model (CMM) of uncertainty. In contrast, by assuming
knowledge of only marginal moments, we consider a
marginal moment model (MMM) of uncertainty.

1.3. Our Results and Discussions of the Model
Compared to the CMM, one limitation of the MMM
is that it does not specify any correlation structure

of job durations. For example, assume that the job
durations are known to be independent. The infor-
mation of independence can be accurately (but not
exactly) captured by the CMM by assuming, as an
input to the model, zero correlations between all pairs
of job durations. On the other hand, for the MMM,
the worst-case distribution corresponding to a given
solution could be highly correlated, which does not
accurately reflects the independence of job durations.

However, there is evidence that job durations can be
correlated in healthcare settings for various reasons,
such as the presence of student doctors and different
work loads among days (Cayirli and Veral 2003, Gupta
and Denton 2008). In such situations, if estimation
of the exact dependence structure is difficult without
sufficient data, then the MMM might be used as a
conservative approximation.

We elect to use the MMM framework to study
the appointment sequencing and scheduling problem
mainly for the following reasons. First, it is noted in
the literature that the MMM often leads to computa-
tionally more tractable formulations than the CMM,
at the cost of not capturing the dependence struc-
ture between uncertain parameters. For example, the
extremal expected value for a 0-1 integer program
under the MMM is polynomial-time computable as long
as its deterministic counterpart is Bertsimas et al. (2004,
2006). However, computing the extremal expected
objective value of a general linear program (LP) under
the CMM is NP -hard (Bertsimas et al. 2010). For the
appointment scheduling problem, we show in §2 that
the MMM leads to computationally tractable conic
programming formulation. In particular, the mean-
variance model can be formulated as a second-order
conic program (SOCP), whereas the mean-support
model can be formulated as a linear program.

Second, as we show in §3, we are able to derive an
analytic solution for our mean-variance model. Under
a mild assumption, we can determine optimal time
allowances by a very simple procedure, which can
be implemented on a spreadsheet. More importantly,
the analytic solution enables us to solve the min–max
appointment sequencing problem. In particular, we
show that sequencing jobs by OV is optimal in our
model. Our analysis enhances understanding on this
commonly used heuristic from a robust optimization
perspective. In §4, we obtain a similar result for our
mean-support model, for which we show it is optimal to
sequence jobs by increasing order of width of support.

Third, in our numerical tests discussed in §3.1,
we observed excellent performance of the solutions
obtained from the mean-variance appointment schedul-
ing model. The solutions are compared against “opti-
mal” schedules that are obtained using the SAA
approach. The latter approach assumes complete infor-
mation about the probability distributions of job dura-
tions, which are used to compute the expected costs
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for both solutions. In §3.3, we also provide numerical
tests to show that OV is optimal or very close to opti-
mal, even for problems where the job durations are
independent.

The remainder of this paper is organized as follows.
We present the conic programming formulation of the
general min–max appointment scheduling problem
in §2. Then we focus on the mean-variance model
and the mean-support model in §§3 and 4, respec-
tively. For both cases, we analyze structural properties
of the optimal sequences and schedules. Finally, §5
concludes our paper. The proofs of analytical results
in §§2 and 3 are provided in the appendix, whereas
the proofs of analytical results in §4 are provided
in the online supplement (available at http://ihome
.ust.hk/~hymak/Papers/Schedule_Appendix.pdf).

2. Conic Programming Approach
In this section, we provide a tractable conic program-
ming formulation for the min–max problem (6). Our
first step is to analyze the inner maximization problem.
More specifically, for any fixed s ∈S, we consider the
maximization problem

max
F ∈F4�1Q5

EF 6f 4s1 p̃570 (7)

This is a moment problem with the probability measure
F being the decision variable. To proceed, we first
obtain a characterization of cost function f 4s1p5, defined
in Equations (1) and (2), as discussed below. We notice
that there is a linear programming representation of (1)
and (2). Taking the dual of this linear program leads
to the following proposition. This result can also be
found in Kong et al. (2013).

Proposition 1. For any given s and p, it holds that

f 4s1p5= max
y∈å

n
∑

i=1

4pi − si5yi1 (8)

where y = 4y11 0 0 0 1 yn5 and

å=







yi − yi−1 ≥ −1 for 2 ≤ i ≤ n1
yn ≤ �
y ≥ 0







0 (9)

In view of Equation (8), problem (7) becomes

max
F ∈F4�1Q5

EF

[

max
y∈å

n
∑

i=1

4p̃i − si5yi

]

0 (10)

In the literature, several results are known concerning
problems similar to (10). In particular, Bertsimas et al.
(2004, 2006) show that if the extreme points of å
were binary, then problem (10) could be formulated
as a semidefinite program. However, this result does
not apply to our problem because the extreme points

of å are not binary, but instead integral (when �
is an integer). In this case, it is possible to apply
the approach proposed by Natarajan et al. (2009),
which essentially maps the extreme points of å into a
higher-dimensional space using a binary expansion.
In particular, by introducing binary variables Y =

4Yik2 i = 11 0 0 0 1 n3 k = 01 0 0 0 1�5, any nonnegative integer
variable yi can be represented as

yi =
�
∑

k=0

kYik1
�
∑

k=0

Yik = 11 Yik ∈ 801191

for k = 0111 0 0 0 1�0

Then there is a unique, one-to-one correspondence
between the extreme points of å and B, which is
defined as

B=























































Y 2

�
∑

k=0

kYik−

�
∑

k=0

kYi−11k ≥−1 for 2≤ i≤n1

�
∑

k=0

kYnk ≤�

�
∑

k=0

Yik =1 for 1≤ i≤n1

Yik ∈80119 for i=11210001n1 k=0111000























































0

Then problem (10) can be formulated as a concave
maximization problem. In particular, if F4�1Q5 is the
set of distributions with given (marginal) means and
standard deviations, Natarajan et al. (2009) show that
problem (10) can be formulated as

max
Y∈CH4B5

n
∑

i=1

(

4�i − si5
�
∑

k=0

kYik

+�i

√

√

√

(

�
∑

k=0

kYik

)2

−

�
∑

k=0

kY 2
ik

)

1 (11)

where CH4B5 is the convex hull of B. However, the
tractability of (11) relies on an explicit characterization
of CH4B5. Indeed, how to efficiently compute CH4B5
for special classes of problems has been suggested for
future research (Natarajan et al. 2009). It is not clear
to us how to apply this approach to derive the main
results of our models.

In this paper, we take a different approach to analyze
the moment problem (10). Rather than analyzing CH4B5,
our approach relies directly on the special structure
of å. To begin, we first show the following result by
analyzing the dual of the moment problem (10), which
is a semi-infinite linear program.

Lemma 1. For any given s ∈S, the optimal objective
value of problem (10) is equal to

min
Ð

max
y∈å

n
∑

i=1

hi4yi1�5+
n
∑

i=1

∑

q∈Q

Miq�iq1 (12)
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where Ð= 4�iq2 i = 11 0 0 0 1n; q ∈Q5, and

hi4yi1Ð5= max
pi∈Di

(

4pi − si5yi −
∑

q∈Q

�iqp
q
i

)

0 (13)

Lemma 1 reduces the stochastic optimization prob-
lem (10) to a deterministic min–max problem (12).
In the literature, one approach to tackle such a min–max
problem is to take the dual of the inner maximiza-
tion problem over y, and as a result, reformulate the
min–max problem as a min–min problem, which ends
up being convex in certain cases. Another potential
approach is to interchange the ordering of optimization
to max–min, using the saddle point theorem. How-
ever, neither approach would directly work in our
case, because the (maximization) objective function
in problem (12) is not concave in y. (In fact, it is
straightforward to see that hi4yi1Ð5 is convex in yi for
each i.)

Therefore, we use an alternative approach that uti-
lizes the special structure of the inner maximization
problem of the min–max problem (12). For any given Ð,
we consider

max
y∈å

n
∑

i=1

hi4yi1Ð50 (14)

One key step in our analysis is to recognize prob-
lem (14) as a convex maximization problem over the
polyhedron å. It then follows that there must exist an
optimal solution that is an extreme point of å. By ana-
lyzing the structural properties of the extreme points
of å, we shall be able to reformulate this nonlinear
program as a linear program. Then, by strong duality
of linear programming, the maximization problem (14)
can be equivalently formulated as a minimization linear
program. Therefore, we can reformulate the min–max
problem (12) as a convex minimization problem. This
is formally proved in the following proposition.

Proposition 2. The optimal objective value of problem
(14) is equal to

min
�

n
∑

i=1

�i

s.t.
min8j1n9
∑

i=k

max
pi∈Di

(

4pi − si5�ij −
∑

q∈Q

�iqp
q
i −�i

)

≤ 0

for 1 ≤ k ≤ n1 k ≤ j ≤ n+ 11

(15)

where Ë= 4�11 0 0 0 1�n5, and

�ij =

{

j − i1 1 ≤ i ≤ j ≤ n3
n+� − i1 1 ≤ i ≤ n1 j = n+ 10 (16)

As is shown in the proof of Proposition 2, the def-
inition of �ij is motivated by the characterization
of extreme points of å. More specifically, for any

extreme point y ∈å and for any i, yi =�ij for some
j = 11 0 0 0 1n+ 1.

Proposition 2 enables us to formulate the min–max
appointment scheduling problem (6) as a tractable
conic program. Indeed, by Proposition 2 and Lemma 1,
problem (6) is equivalent to

min
s1Ð1Ë

n
∑

i=1

�i+

n
∑

i=1

∑

q∈Q

Miq�iq

s.t.
min8j1n9
∑

i=k

max
pi∈Di

(

4pi−si5�ij −
∑

q∈Q

�iqp
q
i −�i

)

≤0

for 1≤k≤n1 k≤ j≤n+11
n
∑

i=1

si ≤T 1

s≥00

(17)

Moreover, if we let

aij = max
pi∈Di

(

4pi − si5�ij −
∑

q∈Q

�iqp
q
i −�i

)

1

then constraint (17) can be replaced by

min8j1n9
∑

i=k

aij ≤ 0 for 1 ≤ k ≤ n1 k ≤ j ≤ n+ 1 (18)

and

4pi − si5�ij −
∑

q∈Q

�iqp
q
i −�i − aij ≤ 0

for 1 ≤ i ≤ n1 i ≤ j ≤ n+ 10 (19)

Constraint (18) is clearly linear and thus tractable. Con-
straint (19) asserts that certain polynomial functions
(in variable pi) are nonpositive. By applying results
of Nesterov (1997) and Bertsimas and Popescu (2005)
on univariate polynomial optimization, constraint (19)
can be represented by semidefinite constraints. There-
fore, one can formulate problem (6) as a semidefinite
program.

In §§3 and 4, we focus on two special cases of the
min–max appointment scheduling problem (6): the
mean-variance model and the mean-support model.
We show that these two models can be formulated as
SOCPs and LPs, respectively.

3. The Mean-Variance Model
In this section, we first derive, for the mean-variance
model given a fixed job sequence, the optimal time
allowances and the corresponding worst-case distribu-
tion under a mild condition. Then, we show that OV is
optimal among all feasible sequences of the jobs under
the same condition. Finally, we provide numerical test
on the performance of our formulation. To begin, we
show that the mean-variance model of problem (6) can
be formulated as an SOCP.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

40
.1

39
.1

67
] 

on
 1

1 
Se

pt
em

be
r 

20
14

, a
t 2

0:
58

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Mak, Rong, and Zhang: Appointment Scheduling with Limited Distributional Information
Management Science, Articles in Advance, pp. 1–19, © 2014 INFORMS 7

Theorem 1. When Q = 81129 and �=�n, problem (6)
can be formulated as the following nonlinear program:

min
Â>01Á1Ë1s

n
∑

i=1

4�i +Mi1�i +Mi2�i5 (20)

s.t.
min8n1 j9
∑

i=k

�i ≥

min8n1 j9
∑

i=k

(

4�ij −�i5
2

4�i

− si�ij

)

for 1 ≤ k ≤ n1 k ≤ j ≤ n+ 11 (21)

s ∈S0

Moreover, the nonlinear constraints (21) are equivalent to
the following second-order conic constraints by introducing
a new set of decision variables �ij for 1 ≤ i ≤ n and i ≤ j ≤

n+ 1:

min8n1 j9
∑

i=k

4�ij −�i −�ijsi5≤ 0 for 1 ≤ k ≤ n1 k ≤ j ≤ n+ 1

and

4�i + �ij5≥

√

4�i − �ij5
2 + 4�ij −�i5

2

for 1 ≤ i ≤ n1 i ≤ j ≤ n+ 10

In the following, we will analyze formulation (20).
In particular, under a mild assumption, we shall derive
the optimal time allowances s in closed form. The
analysis is based on the following result.

Lemma 2. The Lagrangian dual of problem (20) can be
formulated as the following problem:

max
Ä∈ã

min
s∈S

n
∑

i=1

(

�i

√

√

√

√

i
∑

k=1

n+1
∑

j=i

�2
ij�kj −

( i
∑

k=1

n+1
∑

j=i

�ij�kj

)2

+ 4�i − si5
i
∑

k=1

n+1
∑

j=i

�ij�kj

)

1 (22)

where

ã=

{

Ä≥ 02
i
∑

k=1

n+1
∑

j=i

�kj = 1 for i = 11 0 0 0 1n
}

0

Moreover, the optimal objective values of problem (20) and
problem (22) are the same.

In formulation (22), �kj is the dual variable associated
with constraint (21) in formulation (20).

3.1. Optimal Job Allowances
In this subsection, we provide an optimal solution to
problem (20) and its Lagrangian dual problem (22).
The solution relies on a quantity that is defined in the
next lemma.

Lemma 3. There exists a unique �, denoted by �∗, in
the interval 401�5 such that

n
∑

i=1

(

�i +
�i1n+1/2 −�

√

��i1n+1 − 4�52
�i

)

= T 0 (23)

Moreover, �∗ is the optimal solution to the problem

max
�∈401�5

n
∑

i=1

(

�i

√

�i1n+1�−�2 +�i�

)

−�T 0 (24)

We define, for each i = 11 0 0 0 1n,

�∗

i =
�i1n+1/2 −�∗

√

�∗�i1n+1 − 4�∗52
0 (25)

We are now ready to present our main result of this
section.

Theorem 2. Assume that �i + �∗
i �i ≥ 0 for all i =

1121 0 0 0 1n. Then the following holds.
• The solution Ä∗ defined by (26) is optimal to the

Lagrangian dual problem (22):

�∗

11n+1 =
�∗

�11n+1
3

�∗

i1n+1 =
�∗

�i1n+1
−

�∗

�i−11n+1
for i = 21 0 0 0 1n3

�∗

ii = 1 −
�∗

�i1n+1
for i = 11 0 0 0 1n3

�∗

ij = 0 for i < j ≤ n0

(26)

• The solution s∗ defined by (27) is optimal to prob-
lem (20) (and thus optimal to problem (6)):

s∗

i =�i +�∗

i �i0 (27)

• The optimal objective values of problem (22) and prob-
lem (20) are both equal to

n
∑

i=1

4�i

√

�i1n+1�
∗ − 4�∗52 +�i�

∗5−�∗T 0 (28)

Theorem 2 provides a sufficient condition to obtain
optimal time allowances without solving the second-
order conic program (20) explicitly. One can use a
spreadsheet to search for the value of �∗ that solves
Equation (23). Consequently, �∗

i can be easily computed
by using formula (25). Then one can check whether
the condition �i +�∗

i �i ≥ 0 holds for all i. If so, s∗
i =

�i +�∗
i �i is optimal time allowance for job i. This simple

procedure can be easily implemented in practice.
Notice that the key assumption of Theorem 2 is that

�i +�∗
i �i ≥ 0 for all i = 11 0 0 0 1n. As can be seen in the

proof of Claim 2 for Theorem 2 provided in appendix,
this assumption is only used to ensure that the time
allowance defined by formula (27) is nonnegative, and

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

40
.1

39
.1

67
] 

on
 1

1 
Se

pt
em

be
r 

20
14

, a
t 2

0:
58

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Mak, Rong, and Zhang: Appointment Scheduling with Limited Distributional Information
8 Management Science, Articles in Advance, pp. 1–19, © 2014 INFORMS

thus feasible. Therefore, in the appointment scheduling
problem (6), if the only constraint associated with s
is
∑n

i=1 si ≤ T , i.e., removing nonnegativity constraints
of s, then Theorem 2 still holds without assuming
�i + �∗

i �i ≥ 0 for all i = 11 0 0 0 1n. In that case, s∗
i =

�i +�∗
i �i is always optimal to the relaxed problem (6)

and yields the optimal objective value defined by (28).
Theorem 2 shows that the optimal time allowances

follow the intuitive “mean plus safety stock” pattern,
where �∗

i can be interpreted as the safety factor of job i.
Furthermore, the safety factors are decreasing in i (as
�i1n+1 is decreasing in i), and can be negative, i.e., the
time allowance can be less than the mean job duration.
This implies that more slack should be allocated to the
earlier jobs, even if that leads to allocating allowances
that are shorter than the expected durations to jobs
later in the sequence. This “decreasing safety factor”
pattern is a result of our robust optimization model,
whose objective is to guard against the worst-case
distribution. Note that any delay of completion of the
earlier jobs may propagate downstream and cause
further delays in subsequent jobs. In view of this,
especially when positive correlations between durations
of consecutive jobs are possible, it is preferable to avoid
delays of earlier jobs by providing larger allowances,
as measured by some safety factor times the standard
deviations of job durations.

The decreasing safety factor pattern is not only
optimal for our robust model, but also optimal in
certain cases where the true distribution is given, but
the jobs durations are positively correlated. To illus-
trate, we consider an example with three jobs and
the sequence is fixed as 1, 2, 3. For each job i, the
job duration is p̃i = � + �i, where � and �i follow an
empirical distribution generated by 2,000 samples from
independent lognormal distributions where E6�7= 1,
std6�7= 101, and E6�i7= 1, std6�i7= 0055. The means,
standard deviations, and correlations of the job dura-
tions, based on the empirical distribution, are provided
in Table 1. The optimal time allowances can be obtained
by solving the deterministic equivalent of the two-
stage stochastic linear programming formulation of
the appointment scheduling problem. The results are
presented in Table 1. It is clear that the safety factors
are decreasing in i.

However, we note that although the decreasing safety
factor pattern can be optimal in certain settings, it does
not hold universally. There have been previous studies
in the literature trying to gain understanding on the
pattern of optimal job allowances when the distribution
of job durations is known. One result worth discussing
is the observation by Denton and Gupta (2003), who
report that, for instances in which job durations are
independent and identically distributed (i.i.d.) with
known distributions, and waiting time cost is small
(relative to overtime cost), it is typically optimal to

Table 1 An Example of Decreasing Safety Pattern

Job

1 2 3

Correlation
Job 1 1 0022 0021
Job 2 0022 1 0021
Job 3 0021 0021 1

Standard deviation �i 1016 1036 1022
Mean �i 1099 2001 2000
Time allowance s∗

i 2028 2025 1048
Safety factor �∗

i 0025 0017 −0043

allocate time allowances following a “dome-shape”
pattern (i.e., initially increasing, and then decreasing).
They also point out that “if, however, the waiting
and idle cost coefficients are not equal for all jobs,
and/or job duration distributions are not i.i.d., then
the solution does not share the dome-shape property”
(Denton and Gupta 2003, p. 1011). Indeed, as discussed
in Cayirli and Veral (2003) and Gupta and Denton
(2008), job durations can be correlated. Besides, waiting
time costs can be large in settings such as operating
room (surgery) scheduling. Under these circumstances,
the dome-shape pattern is not necessarily optimal.
Therefore, to some extent, our finding complements
the existing insights by enriching understanding on the
patterns of optimal time allowances under different
practical settings.

To further justify our model, we investigate the
performance of the robust scheduling solution when
the distributions of job durations are known and inde-
pendent. We consider problem instances where the
number of jobs is from five to eight. Also, the per-unit
overtime cost � is fixed to be 2 for all instances.

We assume that the job durations follow three types
of probability distributions: normal, gamma, and log-
normal. These distributions can be specified by their
means and standard deviations. For each problem
instance, only one particular distribution type will be
used, but different jobs may follow different distribu-
tions. In particular, for each job i, we set �i ∼U6301607
and �i =�i · �, where � ∼U6010037. (Hereafter, we use
U6a1 b7 to denote the uniform distribution over 6a1 b7.)

For each set of generated �i and �i values for i=
1121 0 0 0 1n, we set the length of day as T =

∑n
i=1 �i +

R ·
√

∑n
i=1 �

2
i , where R is a parameter. We allow R

take three possible values, 005, 0, and −005. A smaller
value of R implies that the time constraint is tighter.
Then we solve the second-order conic program (20)
to obtain an optimal robust solution, denoted by sRO.
We also generate 1,000 independent samples from
one of the distribution families with the given means
and standard deviations. Then we can use SAA and
solve the problem as a two-stage stochastic program.
The solution is denoted by sSAA, which serves as an
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approximation to the true optimal solution for the
stochastic optimization model that assumes complete
knowledge of the probability distributions. To compare
the two solutions sRO and sSAA, we evaluate their
corresponding expected total costs as follows. We
randomly generate 10,000 samples from the distribution,
based on which the solution sSAA is obtained. For each
sample, we compute the total costs corresponding
to sRO and sSAA, respectively. Then, we estimate the
following measures of the costs over the 10,000 samples
for all instances:

• means, denoted by MRO and MSAA, respectively;
• upper semivariances, denoted by SVRO and SVSAA,

respectively; and
• tth percentiles, denoted by PT t

RO and PT t
SAA, for

t = 75, 85, 95, and 99, respectively.
Recall that for any random variable X, its upper semi-
variance is defined by

E6max401X −E6X75271

which measures the variability of X above its mean (i.e.,
upside dispersion). Then we compute the percentage
differences of the three measures as follows:

MRO

MSAA
− 11

SVRO

SVSAA
− 11 and

PT t
RO

PT t
SAA

− 10

For each fixed number of jobs and type of distribution,
we generate 20 instances. The average results (over
20 instances in each case) are reported in Table 2.
A negative value indicates that the robust solution
performs better than the SAA solution with regard to a
particular measure.

From Table 2, we can draw a number of observations.
First, the expected cost of the robust solution is higher
than that of the SAA solution. The average percentage
difference ranges from 304% to 1006%, depending on the
number of jobs as well as the value of R. Furthermore,
the SAA solution also performs better for the 75th and
85th percentiles. However, these differences are not
large considering that the robust solution only uses the
first two moments of the distribution, whereas the SAA
solution is determined with access to 1,000 samples of
the true distribution. Second, the increase in expected
cost by implementing the robust solution is partially
compensated by improvements in performances in the
right tail. In particular, the robust solution outperforms
the SAA solution for the 95th and 99th percentiles,
as well as upper semivariance. This suggests that the
robust solution delivers more reliable performance
for extreme cases, producing distribution of cost with
smaller upside dispersion and a shorter right tail. One
possible explanation is that the decreasing safety factor
property of the robust solution guards against costly
scenarios in which consecutive jobs have long dura-
tion realizations simultaneously, and any delays of

Table 2 Percentage Differences (in %) Between Robust Solutions
and SAA Solutions for Three Performance Measures:
Mean, Upper Semivariance, and Percentiles

Number of jobs
Performance
measure R Distribution 5 6 7 8

Mean −005 Normal 304 306 407 504
Gamma 307 400 501 507
Lognormal 309 403 504 600

0 Normal 408 500 603 702
Gamma 501 505 608 705
Lognormal 503 508 702 709

005 Normal 705 708 901 1002
Gamma 705 800 902 1003
Lognormal 707 803 905 1006

Upper −005 Normal −405 −704 −1004 −1507
semivariance Gamma −707 −1006 −1203 −1604

Lognormal −1000 −1203 −1408 −1704
0 Normal −606 −806 −1103 −1602

Gamma −703 −1001 −1200 −1704
Lognormal −807 −1103 −1306 −1806

005 Normal −605 −806 −906 −1406
Gamma −505 −705 −803 −1309
Lognormal −504 −706 −805 −1403

75th percentile −005 Normal 502 505 605 601
Gamma 403 404 507 509
Lognormal 209 308 500 600

0 Normal 606 703 805 800
Gamma 606 606 707 705
Lognormal 503 603 704 704

005 Normal 1205 1208 1207 1203
Gamma 1302 1203 1206 1201
Lognormal 1303 1209 1301 1203

85th percentile −005 Normal 204 109 300 205
Gamma 009 009 108 200
Lognormal −001 002 100 106

0 Normal 205 204 308 304
Gamma 108 109 207 205
Lognormal 100 102 201 107

005 Normal 504 503 701 601
Gamma 507 508 606 506
Lognormal 504 600 605 502

95th percentile −005 Normal −004 −102 −106 −207
Gamma −106 −204 −203 −304
Lognormal −205 −300 −302 −308

0 Normal −101 −107 −108 −300
Gamma −105 −203 −203 −308
Lognormal −204 −209 −209 −406

005 Normal −009 −105 −006 −200
Gamma −007 −102 −005 −204
Lognormal −009 −102 −007 −209

99th percentile −005 Normal −106 −206 −401 −502
Gamma −205 −301 −308 −503
Lognormal −204 −305 −407 −505

0 Normal −205 −302 −408 −508
Gamma −207 −303 −402 −600
Lognormal −204 −306 −500 −603

005 Normal −301 −309 −408 −601
Gamma −300 −300 −307 −507
Lognormal −108 −207 −400 −504
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job completions propagate down the job sequence.
Therefore, the robust solution, although slightly con-
servative in the average case, is very desirable when
planners are risk averse and want to guard against
extreme scenarios Furthermore, the robust solution
enjoys two more advantages over the SAA solution
as discussed previously. In particular, it requires less
distributional information (means and variances) and
is easy to compute (in SOCP form).

3.2. The Worst-Case Distribution
In our min–max model (6), we choose the time
allowances s to minimize the worst-case expected cost
among all distributions in the set F4�1Q5. In this
subsection, we assume that the time allowances are
fixed to be s∗, and show how to construct the corre-
sponding worst-case distribution with the given first
two marginal moments.

In our construction, there are n+1 different scenarios.
For each scenario �= 11 0 0 0 1n+ 1, we define a vector
Y� = 4Y�11 0 0 0 1Y�n5 such that

Y�i =

{

�i1n+1 �≤ i1

0 �> i0

This definition implies that Y1i =�i1n+1 and Yn+11 i = 0
for any i = 11 0 0 0 1n. We also define a vector P� =

4P�11 0 0 0 1 P�n5, for each scenario indexed by �, such
that

P�i =�i −
�i

√

�i1n+1�
∗ − 4�∗52

4�∗
−Y�i50

Here, �i1n+1 and �∗ are defined in (16) and (24), respec-
tively.

Now we define a joint probability distribution of
p̃∗ = 4p̃∗

11 0 0 0 1 p̃
∗
n5 such that

p̃∗
=



























P1 with probability �1 = �∗/�11n+11

P� with probability �� = �∗/��1n+1

−�∗/��−11n+1 for �= 21 0 0 0 1n1

Pn+1 with probability �n+1 = 1 −�∗/�n1n+10

(29)

The vector p̃∗ defines a probability distribution because
�� > 0 by the fact that ��−11n+1 >��1n+1 > 0 for �≥ 2.
Also,

n+1
∑

�=1

�� =
�∗

�11n+1
+

n
∑

�=2

(

�∗

��1n+1
−

�∗

��−11n+1

)

+ 1 −
�∗

�n1n+1
= 10

The next proposition shows that p̃∗ is indeed a
worst-case distribution.

Proposition 3. If �i +�∗
i �i ≥ 0 for all i = 1121 0 0 0 1 n,

where �∗
i is defined in (25), then we have E6p̃∗

i 7=�i and
E64p̃∗

i 5
27=�2

i +�2
i . Moreover, p̃∗ is a worst-case distribution

when s= s∗.

One may note that, as defined above, p̃∗ may pos-
sibly take on negative values, because our analysis
is based on the assumption that the support �=�n.
In practice, however, job durations are naturally non-
negative. We note that it is possible to derive a similar
SOCP formulation while imposing the requirement
that the job durations are always nonnegative.

Remark 1. If �=�n
+

, one can follow the same steps
of the proof of Theorem 1 to reformulate problem (6)
as the following SOCP:

min
Â>01Á1Ë1s1 c

n
∑

i=1

4�i +Mi1�i +Mi2�i5

s.t.
min8n1 j9
∑

i=k

4�ij −�i −�ijsi5≤ 0

for 1 ≤ k ≤ n1 k ≤ j ≤ n+ 13

4�i + �ij5≥

√

4�i − �ij5
2 + c2

ij

for 1 ≤ i ≤ n1 i ≤ j ≤ n+ 13

cij ≥�ij −�i for 1 ≤ i ≤ n1 i ≤ j ≤ n+ 13

cij ≥ 0 for 1 ≤ i ≤ n1 i ≤ j ≤ n+ 13

s ∈S0

The above SOCP is computationally tractable. How-
ever, we find that the nonnegativity assumption has
almost no impact on the accuracy of the model practi-
cally. We carry out the same test as in Table 2 based on
formulation (30) and find that the performances of the
two models have negligible differences. As discussed
throughout §3, formulation (20) is analytically tractable
and allows us to derive structural results on the optimal
job allowances and sequence. However, such is not
the case for formulation (30). Therefore, we focus on
formulation (20) throughout this paper.

3.3. Optimal Job Sequence
In this subsection, we consider the appointment
sequencing problem. In the literature, it is a popular
heuristic to sequence jobs by OV. We will prove the
optimality of OV for the mean-variance model for any
number of jobs under a mild condition.

Let � be a particular sequence of jobs 1121 0 0 0 1 n, i.e.,
a permutation of the set of integers 81121 0 0 0 1n9. We
use �i to denote the job index of the ith job performed
following sequence �.

Furthermore, we use �∗ to denote the OV sequence.
Without loss of generality, we assume that �1 ≤ �2 ≤

1 · · · 1≤ �n, i.e., jobs are indexed following the OV
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sequence; that is �∗
i = i for i = 11 0 0 0 1n. For any

sequence �, its worst-case expected cost can be obtained
by solving the problem

G4�5= min
s∈S

max
F∈F4�n1 811295

EF6f 4s1 p̃�570 (30)

By Lemma 3, there exists a unique �� ∈ 401�5 that
maximizes

max
�∈401�5

n
∑

i=1

4��i

√

�i1n+1�−�2 +��i
�5−�T 0

Then our main result follows.

Theorem 3. If

�i +
�i1n+1/2 −��∗

√

��∗�i1n+1 − 4��∗52
�i ≥ 0

for all i = 11 0 0 0 1n, then G4�∗5≤G4�5 for any �; that is,
OV is the optimal sequence.

Remark 2. Consider the case in which the time
allowances are not decision variables, but fixed to be
si =�i +��i for each i; that is, all the jobs have the same
safety factor. Similar to the proof of Theorem 3, one
can show that OV is optimal in this case as well. It has
been brought to our attention that this result assuming
common safety factors may also be proved by applying
Proposition 2 in Natarajan et al. (2009). However, their
result does not seem to be directly applicable to our
main results in this section, i.e., Theorems 2 and 3, as
we discussed at the beginning of §2.

In Theorems 2 and 3, we make the assumption that
�i + 44�i1n+1/2 − ��∗5/

√
��∗�i1n+1 − 4��∗525�i ≥ 0. This

assumption may not hold in some settings. In such
cases, the time allowances s∗ defined in (27) may not
be feasible to problem (20). Consequently, OV may not
be the optimal sequence in such scenarios. For example,
we consider a very special instance with three jobs such
that �1 = 001, �1 = 105, �2 = �2 = 2, and �3 = �3 = 3.
We first assume that the jobs are sequenced according
OV. If T = 1 and � = 20, then it is easy to check that
�∗ = 15086 solves Equation (23). Then by formula (27),
we get

s∗

1 = −006401 s∗

2 = 008111 s∗

3 = 008280

This is clearly not a feasible time allowance since s∗
1 < 0.

Indeed, if we solve the SOCP (20) directly, we can find
that the optimal time allowances of the three jobs under
the OV sequence are 0, 0059, and 0041, respectively,
yielding a total expected cost of 123.67. In contrast,
the optimal sequence (identified by enumerating the
six possible sequences) is to perform job 2 first, job 1
second, and job 3 the last, yielding a total expected
cost of 123.16.

In the counterexample above, the mean duration of
job 1 is significantly shorter than the standard deviation.
Also, the sum of the mean durations of the three jobs,
which is 501, is significantly longer than the length of
day, which is 1. Such scenario is clearly not realistic.
Based on our experience of extensive experiments
with more realistic parameters of the problem, the
assumption we made in Theorems 2 and 3 holds in
almost all cases. It indicates that the OV sequence is
typically optimal for our min–max model.

Beyond our min–max model, the optimality or near
optimality of OV was observed in several earlier stud-
ies (Denton et al. 2007, Mancilla and Storer 2012)
that assumed that the distributions of job durations
are known and they are independent. We have also
performed the following numerical study to provide
further evidence. We generate instances with five to
eight jobs, and set the unit overtime cost, � = 1, and the
length of day, T =

∑n
i=1 �i. Similar to the computational

study in §3.1, the mean and standard deviation of the
job durations are randomly generated as follows: �i

is generated from U6301607, and �i is generated from
�i · � with � ∼U6010037. Once the means and standard
deviations of the jobs are generated, we then randomly
generate 1,000 samples of the job durations using three
types of distributions: normal, gamma, and lognormal.

The SAA approach is used to solve a two-stage
stochastic linear integer program that gives the “opti-
mal” sequence and time allowances, together with the
“optimal” expected total cost, denoted by MSAA. We
solve all instances using CPLEX version 12.2 running
on a Lenovo Thinkpad T400 laptop computer with
an Intel Core 2 Duo processor and 2 GB memory. For
the OV sequence, we use SAA to find “optimal” time
allowances and the corresponding expected total cost
denoted by MOV. We evaluate the performance of the
OV sequence by computing the percentage gap between
MSAA and MOV. The percentage gap is defined by

MOV

MSAA
− 10

For a fixed number of jobs and a particular type of prob-
ability distributions of job durations, we compute the
average and worst percentage gaps over 20 randomly
generated instances. The results of the percentage gap
and computation time for SAA are reported in Table 3.
We observe that, for all instances tested, the expected
cost of OV sequences are very close to optimal (i.e.,
exhibiting very small percentage gaps). This suggests
that, for the purpose of choosing the right sequence to
perform the jobs, one can do very well using only the
variance of job durations, but not full knowledge of
the actual probability distributions. This is a desirable
property considering that the computation times for
finding the “optimal sequence” increase quite rapidly as
the number of jobs increases, as observed from Table 3.
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Table 3 Verifying the Performance of OV

Number of jobs

Distribution Measures 5 6 7 8

Normal Average gap of OV (%) 0008 0017 0032 0027
Worst gap of OV (%) 1013 1013 2023 1044
Average computation 6 23 106 498

time (second)
Longest computation 12 44 233 1,483

time (second)
Gamma Average gap of OV (%) 0001 0021 0021 0029

Worst gap of OV (%) 0014 0088 1014 1024
Average computation 6 21 91 434

time (second)
Longest computation 12 36 220 1,428

time (second)
Lognormal Mean gap of OV (%) 0005 0008 0016 0027

Worst gap of OV (%) 0062 0094 0081 1022
Average computation 5 20 88 414

time (second)
Longest computation 10 37 201 1,272

time (second)

According to Table 3, MOV could be strictly higher
than MSAA. However, this does not imply that OV is
not optimal for those problem instances. The reason is
that both MOV and MSAA are only approximations of
the true expected total cost for the corresponding job
sequences, estimated by using 1,000 samples of the true
distribution. The differences between MOV and MSAA
are too small to be differentiated from the possible
estimation errors. Therefore, the OV sequences may or
may not be exactly optimal when the time allowances
and the expected cost are computed with respect to the
true probability distribution. Nevertheless, the numer-
ical results confirm that the OV sequence provides
close-to-optimal performance, which is consistent with
the findings in Denton et al. (2007) and Mancilla and
Storer (2012).

4. The Mean-Support Model
In this section, we consider the mean-support model,
in which only the means and supports of individual
job durations are known. We prove in Theorem 4
that the min–max appointment scheduling problem
can be formulated as a linear program, when the job
sequence is fixed. To be consistent with the results for
the mean-variance model presented in §3, we abuse
the use of some notation such as Î, Á, Ä, and �.

Theorem 4. When Q = 819 and Di = 6�i − di1�i + d̄i7,
problem (6) can be formulated as the following LP:

min
c1Á1Ë1 s

n
∑

i=1

4�i +�i�i5 (31)

s.t.
min8n1 j9
∑

i=k

4�i +�ijsi − �ij5≥ 0

for 1 ≤ k ≤ n1 1 ≤ k ≤ j ≤ n+ 13 (32)

�ij +�i4�i − di5≥�ij4�i − di5

for 1 ≤ i ≤ n1 1 ≤ i ≤ j ≤ n+ 13 (33)

�ij +�i4�i + d̄i5≥�ij4�i + d̄i5

for 1 ≤ i ≤ n1 1 ≤ i ≤ j ≤ n+ 13 (34)
n
∑

i=1

si ≤ T 3 (35)

s≥ 00 (36)

Proof. The proofs of results in this section are pro-
vided in the online supplement. �

Next, we provide a closed-form expression for the
optimal objective value of the LP as well as the optimal
time allowances. For notational brevity, we define

u4�5=

( n
∑

i=1

�i−T

)

�+

n
∑

i=1

min4d̄i�1di4�i1n+1 −�550 (37)

It is obvious that u4�5 is a concave function of �.
Therefore, there must exist an optimal solution to the
problem

max
�∈601�7

u4�51

and let �∗ be the least optimal solution. In fact, u4�5 is
a piecewise linear concave function of �, and thus �∗

must be one of its break points. However, besides 0
and �, any breakpoint � of u4�5 must satisfy

d̄i�= di4�i1n+1 −�53

that is,

�=
di

di + d̄i
�i1n+1

for some i = 1121 0 0 0 1n. It implies that we can search
for �∗ among at most n+ 2 points. This also motivates
the following partition of the set 81121 0 0 0 1n9. Let

é1 =

{

i2 �∗ <
di

di + d̄i
�i1n+1

}

1

é2 =

{

i2 �∗ >
di

di + d̄i
�i1n+1

}

1 and

é3 = 81121 0 0 0 1n9\é1\é20

We are now ready to present our main results of this
section.

Theorem 5. Assume that �∗ ∈ 401�5. Then the optimal
objective value to problem (31) is equal to u4�∗50 Moreover,
any s that satisfies

∑n
i=1 si = T , and the constraint (38) as

follows is optimal to problem (31):

si =�i + d̄i for i ∈é11

si =�i − di for i ∈é21 (38)

si ∈ 6�i − di1�i + d̄i7 for i ∈é30

Notice that when �∗ ∈ 401�5, there always exists s
that satisfies

∑n
i=1 si = T and constraints (38). We use s∗

to denote one such solution.
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Theorem 5 is based on the assumption that �∗ ∈ 401�5.
In the following, we show a simple condition that
guarantees �∗ > 0. Notice that

u4�5−u405=

( n
∑

i=1

4�i + d̄i5− T

)

�

for sufficiently small � > 0. Therefore, when the length
of day T is shorter than the sum of maximum possible
durations of all the jobs, i.e., T <

∑n
i=14�i + d̄i5, then we

must have u4�5−u405 > 0, which implies that �∗ > 0.
However, we have not found a simple condition that
guarantees �∗ <�.

Finally, notice that the optimal allowance for any job
in é1 (é2, respectively) is equal to the upper bound
(lower bound, respectively) of the support of its dura-
tion. But the optimal allowances for jobs in é3 may not
be uniquely defined. However, when é3 is a singleton,
there is a unique solution that satisfies

∑n
i=1 si = T and

constraint (38). This is the case when di/Li is a constant
for all i, where Li = di + d̄i denotes the width of the
support of the duration of job i. Under this condition,
there is at most one job whose optimal time allowance
is in the interior of the support of its duration.

In the mean-support setting, we may measure the
duration variability of job i by Li. Similarly, di and d̄i
can be used to measure the variability below the mean
and above the mean, respectively. Motivated by the
optimality of OV in the robust mean-variance model, it
is natural to suggest that for the robust mean-support
model, it is optimal to sequence jobs in increasing
order of Li. It is indeed the case, under a technical
condition related to the ratio d̄i/Li. This ratio can be
interpreted as the relative variability above the mean
(compared with the width Li). The condition assumes
that there exists � ∈ 40115 such that d̄i/Li = � for all i.
Intuitively, this assumption states that the supports of
job durations have the same degree of symmetry about
the respective means.

The result is formally presented in Theorem 6 below,
which is an immediate corollary of Theorem 5. Similar
to the notation in §3.3, let � denote any sequence of
the jobs such that �i is the ith job in the sequence.
Define L�i

, ��i
1 d̄�i

, and d�i
accordingly. Let �∗ be the

sequence such that L�∗
1
≤ · · · ≤ L�∗

n
, that is, jobs are

sequenced by increasing width of support. Finally, let
�� be the least optimal solution to the problem

G4�5 = max
�∈601�7

( n
∑

i=1

��i
− T

)

�

+L�i

n
∑

i=1

min4��1 41 −�54�i1n+1 −�550

Then we have the following:

Theorem 6. Assume that d̄i/Li is a constant in 40115
for all i. If �� ∈ 401�5, then �∗ is the optimal sequence.

5. Conclusion
In this paper, we study a stochastic appointment
scheduling problem that is prevalent in the healthcare
industry. We develop tractable, distribution-free conic
programming formulations that are based on partial
distributional information of random job durations,
i.e., support and moments. Besides computational
tractability, we are able to analytically derive struc-
tural results for the special cases where the means
and variances, and means and supports, of the job
durations are known. Also, based on the analytical
results, we derive insights that aid appointment plan-
ning. In particular, we prove that the widely used
heuristic of ordering jobs by variance (ordering by the
width of support, respectively) is optimal under a mild
condition. This provides further theoretical evidence
supporting the use of this popular heuristic. Further-
more, in many cases, the optimal schedule of our model
can be obtained with a simple procedure. This result
suggests a spreadsheet-implementable heuristic to be
used in practice.

The main technical contribution of this paper is a
new approach to solve the problem

max
F ∈F4�1Q5

EF

[

max
y∈å

n
∑

i=1

4p̃i − si5yi

]

0

Its dual problem is a semi-infinite linear program. The
difficulty in analyzing the dual problem is to efficiently
handle its infinitely many constraints. We observe, for
any given dual solution, that checking its feasibility can
be reformulated as a problem of maximizing a separable
convex function over the polyhedron å. Although such
a reformulation is still intractable in general, we have
been able to take advantage of the special structure
of å to further reformulate it as a finite dimensional
linear program. The last step is crucial in solving our
semi-infinite linear program. We may consider other
marginal moments linear programming models where
the feasible polyhedron å could be different from
ours. Our approach might be applicable if the problem
of maximizing separable convex functions over that
polyhedron admits tractable formulations.

Our research can be extended in several direc-
tions. First, healthcare facilities typically have multiple
resources, e.g., operating rooms, that can process jobs
in parallel. An interesting direction is to extend our
modeling framework to the case with multiple parallel
resources handling jobs. This poses another challenge;
the multiple-resource problem involves the decision
of assigning jobs to resources, in addition to sequenc-
ing and scheduling. Second, no-shows are prevalent
in many healthcare appointment planning problems.
Because no-shows lead to idleness of the resource, it is a
common practice to allow overbooking. Then, the joint
decisions of sequencing, scheduling, and overbooking
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of jobs, under limited distributional information on
job durations and possibly no-show probabilities, are
expected to give rise to challenging new problems.
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Appendix. Proofs of Analytical Results

Additional Lemmas
In the proofs of our analytical results, we will use Lemmas 4–8.
The proofs of Lemmas 4–7 are omitted because they either
are directly adopted from references or can be easily derived
from the first-order condition of unconstrained optimization.
The proof of Lemma 8 is provided in the online supplement.

Lemma 4 (Rearrangement Inequality in Hardy et al.
1952). Suppose that 0 ≤ a1 ≤ a2 ≤1 · · · 1≤ an and b1 ≥ b2 ≥

1 · · · 1≥ bn ≥ 0. Let � be a permutation of 81121 0 0 0 1n9. Then
∑n

i=1 aibi ≤
∑n

i=1 a�ibi for any �.

Lemma 5. Assume that a and b are positive real numbers.
Then minx>0 ax+ b/x = 2

√
ab.

Lemma 6. Assume that a, b, c, and d are all nonnegative real
numbers, and b > a2 and c ≥ d2. Then

min
x

ax+ b
√

c− 2dx+ x2 =
√

4b2 − a254c2 − d25+ ad0

Lemma 7. Assume that a is positive and b is any real numbers.
Then the following problem

max
x∈601 a7

√
ax− x2 − bx

has a unique optimal solution x = 4a/2561 − b/
√

1 + b27.

Lemma 8. Let a11 0 0 0 1 am be m≥ 2 nonnegative real numbers
such that 0 = a1 < a2 < · · ·< am. Let b be any real number. Then

max
x

√

√

√

√

m
∑

j=1

a2
j xj −

(

m
∑

j=1

ajxj

)2

− b
m
∑

j=1

ajxj

s.t.
m
∑

j=1

xj = 11

xj ≥ 01 for j = 11 0 0 0 1m

(39)

has an optimal solution x∗ such that x∗
1 = 1/2 + b/42

√
1 + b25,

x∗
m = 1/2 − b/42

√
1 + b25, and x∗

j = 0 for 1 < j <m.

Proof of Proposition 1
Recall that f 4s1p5 is defined by (1) and (2). It follows that

f 4s1p5= min
n
∑

i=2

Wi +�Wn+1

s.t. W2 ≥ p1 − s11

Wi+1 ≥Wi + pi − si for i = 21 0 0 0 1n1

Wi ≥ 0 for i = 21 0 0 0 1n+ 10

(40)

By strong duality of linear programming, f 4s1p5 is equal to
the optimal objective value of the dual problem of (40). Then
the proposition follows because the maximization problem
in (8) is exactly the dual problem of (40), and (40) is clearly
feasible. �

Proof of Lemma 1
Recall that the feasible set F4�1Q5 of problem (10) is defined
by constraints (3)–(5). Let � be the dual variables associated
with (3), and let �iq be the dual variables associated with
constraints (4) associated with the qth moment. Then, for
fixed s, the dual problem of (10) is

min
�1Ð

�+

n
∑

i=1

∑

q∈Q

Miq�iq

s.t. �+

n
∑

i=1

∑

q∈Q

�iqp
q
i ≥ f 4s1p5 for p ∈�0

(41)

By Assumption 1, the strong duality theorem for the moment
problem holds (see, e.g., Theorem 2.2 of Bertsimas and
Popescu 2005); that is, the optimal objective value of problem
(10) is equal to the optimal objective value of the dual
problem (41).

To complete the proof, we notice that the constraints of
(41) are equivalent to

� ≥ max
p∈�

{

f 4s1p5−
n
∑

i=1

∑

q∈Q

�iqp
q
i

}

0

By Proposition 1, the above is equivalent to

� ≥ max
p∈�

max
y∈å

{ n
∑

i=1

4pi − si5yi −
n
∑

i=1

∑

q∈Q

�iqp
q
i

}

= max
y∈å

max
p∈�

{ n
∑

i=1

4pi − si5yi −
n
∑

i=1

∑

q∈Q

�iqp
q
i

}

= max
y∈å

n
∑

i=1

{

max
pi∈Di

(

4pi − si5yi −
∑

q∈Q

�iqp
q
i

)}

= max
y∈å

n
∑

i=1

hi4yi1Ð50

We must have � = maxy∈å

∑n
i=1 hi4yi1Ð5 in any optimal solu-

tion to (41) because there is no other constraint on �. Then
we conclude that the dual problem (41) is equivalent to
problem (12), which completes the proof. �
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Proof of Proposition 2
First notice that, for any i and for any fixed Ð, hi4yi1Ð5 is
convex in yi. Therefore, problem (14) is a convex maximization
problem. It follows that there exists an optimal solution
to problem (14) that is an extreme point of the feasible set
å. Recall that å is defined by (9). It is easy to see (see
Zangwill 1966, 1969 for a proof) that for any extreme point
y of å, either yn = 0 or yn = � > 0 should hold. And for
i = 11 0 0 0 1n− 1,

yi · 4yi+1 − yi + 15= 03 (42)

that is, for i ≤ n − 1, either yi = 0 or yi = yi+1 + 1. In the
latter case, the value yi is uniquely determined given yi+1.
Applying this fact recursively, we obtain the following result.
For any i ≤ n, if yi > 0 and j is the smallest index such that
j > i and yj = 0 (for notational convenience, we let yn+1 = 0),
then yi =�ij , where �ij is defined in (16). This holds because,
if j ≤ n, then yi = j − i; if j = n+ 1, then yn = �, and thus
yi = n+� − i.

Thus, it is natural to consider a partition of the integers
1121 0 0 0 1 n+ 1 into intervals, where each interval 6k1 j7 has the
following property. For any i ∈ 6k1 j7, yi = 0 if and only if i = j .
Thus yi =�ij for any i ∈ 6k1 j7. In fact, this defines a unique
one-to-one correspondence between any extreme point y of
å and a partition of the integers 1121 0 0 0 1 n+ 1 into intervals.
Thus, the problem of finding an optimal extreme point y
can be transformed into finding an optimal partition of the
integers 1121 0 0 0 1 n+ 1 into intervals. This is presented in the
following.

For any k ≤ j , we define a binary indicator variable tkj
such that tkj = 1 if and only if 6k1 j7 is one of the intervals in
the partition of 611n+ 17. The binary variables 4tkj 2 1 ≤ k ≤ j ≤

n+ 15 represent a partition of 611n+ 17 if and only if

i
∑

k=1

n+1
∑

j=i

tkj = 1 for i = 11 0 0 0 1n+ 10

Also, for 1 ≤ k ≤ j ≤ n+ 1, when tkj = 1,

j
∑

i=k

hi4yi1Ð5=

j
∑

i=k

hi4�ij1Ð51

where we have used the notation hn+1401 Ð5 = 0 and
�n+11n+1 = 0. Therefore, problem (14) is equivalent to

max
t

n+1
∑

k=1

n+1
∑

j=k

( j
∑

i=k

hi4�ij1Ð5

)

tkj (43)

s.t.
n+1
∑

k=1

n+1
∑

j=k

tkj = 1 for i = 11 0 0 0 1n+ 13 (44)

tkj ∈ 80119 for k1 j2 1 ≤ k ≤ j ≤ n+ 10

For this linear integer program, the matrix associated with
the constraint set (44) has the so-called consecutive-ones
property, and thus is totally unimodular (see Faigle and Kern
2000). Therefore, its linear programming relaxation, which
is obtained by replacing the binary constraints tkj ∈ 80119
by nonnegativity constraints tkj ≥ 0, has a binary optimal
solution. Thus, the integer program has the same optimal
objective value as its linear programming relaxation as well

as the dual problem of the linear programming relaxation.
The dual problem is given by

min
Ë

n+1
∑

i=1

�i

s.t.
j
∑

i=k

�i ≥

j
∑

i=k

hi4�ij1Ð5 for 1 ≤ k ≤ j ≤ n+ 10

Since hn+14�n+11n+11Ð5= 0, the dual problem can be simpli-
fied as

min
Ë

n
∑

i=1

�i

s.t.
min8j1n9
∑

i=k

�i ≥

min8j1n9
∑

i=k

hi4�ij1Ð5 for 1≤k≤n1 k≤ j≤n+10

We have now shown that this linear program has the same
objective value as problem (14). This completes the proof by
the definition of hi4�ij1Ð5. �

Proof of Theorem 1
By applying Proposition 2, and by letting �i = �i1 and �i = �i2,
we see that (6) is equivalent to

min
Á1Â1Ë1s

n
∑

i=1

4�i+�iMi1 +�iMi25

s.t.
min8n1j9
∑

i=k

max
pi

(

4pi−si5�ij −�ipi−�ip
2
i −�i

)

≤0

for 1≤k≤n1k≤ j≤n+11

s∈S0

(45)

We now show the equivalence between (45) and (20). First,
for any i = 11 0 0 0 1n, it must hold that �i > 0 in any optimal
solution to (45). To see this, first observe that problem (45) is
bounded from above if we choose �i > 0 for all i = 11 0 0 0 1n.
Next, we notice that

max
pi

44pi − si5�ij −�ipi −�ip
2
i 5

= max
pi

4−�ip
2
i + 4�ij −�i5pi − si�ij5= +�

when �i < 0, or when �i = 0 and �i 6=�ij . But by definition,
�ij 6=�ik if j 6= k, and thus �i =�ij can hold for at most one j .
Therefore, if �i ≤ 0, then

max
pi

44pi − si5�ij −�ipi −�ip
2
i 5= +�

will hold except for at most one j ≥ i. This implies that in this
optimal solution,

∑n
i=1 �i = +�, and thus the optimal objective

value is +�. This contradicts the fact that problem (45) is
bounded from above. Thus, �i > 0 for all i = 11 0 0 0 1n.

Therefore,

max
pi

44pi − si5�ij −�ipi −�ip
2
i 5=

4�ij −�i5
2

4�i

−�ijsi0

Therefore, the constraints of problem (45) is equivalent to

min8n1 j9
∑

i=k

�i ≥

min8n1 j9
∑

i=k

(

4�ij −�i5
2

4�i

− si�ij

)

for 1 ≤ k ≤ n1 k ≤ j ≤ n+ 11

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
2.

40
.1

39
.1

67
] 

on
 1

1 
Se

pt
em

be
r 

20
14

, a
t 2

0:
58

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Mak, Rong, and Zhang: Appointment Scheduling with Limited Distributional Information
16 Management Science, Articles in Advance, pp. 1–19, © 2014 INFORMS

which in turn is equivalent to, by introducing new variables Æ,

min8n1 j9
∑

i=k

�ij ≤

min8n1 j9
∑

i=k

4�i + si�ij5 for 1 ≤ k ≤ n1 k ≤ j ≤ n+ 11

�ij ≥
4�ij −�i5

2

4�i

for 1 ≤ i ≤ n1 i ≤ j ≤ n+ 10

To complete the proof, one can easily see that, when �i > 0,
the constraint

�ij ≥
4�ij −�i5

2

4�i

1

or
�i�ij ≥ 4�ij −�i5

241 (46)

is equivalent to

4�i + �ij5≥

√

4�i − �ij5
2 + 4�ij −�i5

2

by rearranging terms. �

Proof of Lemma 2
We first derive the Lagrangian dual of problem (20). More
specifically, for any 1 ≤ k ≤ n and 1 ≤ k ≤ j ≤ n + 1, we
associate a dual variable �kj ≥ 0 to the nonlinear inequality
(21). Note that this is a convex constraint when �i > 0, which
can be assumed without loss of generality, as shown in
the proof of Theorem 1. The Hessian of the nonlinear term
4�ij −�i5

2/44�i5 is given by










1
2�i

�ij −�i

24�i5
2

�ij −�i

24�i5
2

4�ij −�i5
2

24�i5
3











1

whose principal minors are all nonnegative, and is therefore
positive semidefinite when �i > 0.

For any fixed Ä, the Lagrangian dual function is given by

min
Â>01Á1Ë1 s∈S

n
∑

i=1

4�i +Mi1�i +Mi2�i5

−

i
∑

k=1

n+1
∑

j=i

�kj

(min8n1 j9
∑

i=k

(

�i +�ijsi −
4�ij −�i5

2

4�i

))

= min
Â>01Á1Ë1 s∈S

n
∑

i=1

(

Mi1�i +Mi2�i +

i
∑

k=1

n+1
∑

j=i

�kj
4�ij −�i5

2

4�i

−

( i
∑

k=1

n+1
∑

j=i

�kj�ij

)

si +

(

1 −

i
∑

k=1

n+1
∑

j=i

�kj

)

�i

)

0

Notice that variable Ë is unconstrained. Thus, if
∑i

k=1
∑n+1

j=i �kj = 1, i.e., Ä ∈ã, then the Lagrangian dual func-
tion is equal to

min
Â>01Á1 s∈S

n
∑

i=1

(

Mi1�i +Mi2�i +

i
∑

k=1

n+1
∑

j=i

�kj
4�ij −�i5

2

4�i

− si

( i
∑

k=1

n+1
∑

j=i

�kj�ij

))

3 (47)

otherwise, the dual function is equal to −�. This implies
that we can add the constraint Ä ∈ã to the Lagrangian dual

problem without loss of generality. This is because in the dual
problem, we will choose Ä≥ 0 to maximize the Lagrangian
dual function.

Under the constraint that Ä ∈ ã, the Lagrangian dual
function can be further simplified. In particular, if we optimize
over variable Â > 0 in (47), then by Lemma 5, the dual
function becomes

min
Á1 s∈S

n
∑

i=1

(

Mi1�i +

√

Mi2

i
∑

k=1

n+1
∑

j=i

�kj4�ij −�i5
2
− si

i
∑

k=1

n+1
∑

j=i

�kj�ij

)

= min
Á1s∈S

n
∑

i=1

(

Mi1�i +
√

Mi2

·

√

i
∑

k=1

n+1
∑

j=i

�kj�
2
ij − 2

( i
∑

k=1

n+1
∑

j=i

�kj�ij

)

�i +�2
i

− si

i
∑

k=1

n+1
∑

j=i

�kj�ij

)

1

where the equation holds because
∑i

k=1
∑n+1

j=i �kj = 1 for any
i = 11 0 0 0 1n. Notice that if Ä ∈ã, then

i
∑

k=1

n+1
∑

j=i

�kj�
2
ij ≥

( i
∑

k=1

n+1
∑

j=i

�kj�ij

)2

0

Also, by assumption, Mi2 >M2
i1. Now, we apply Lemma 6

and optimize the Lagrangian dual function over variable Á.
Then the Lagrangian dual function becomes

min
s∈S

n
∑

i=1

√

4Mi2 −M2
i15

( i
∑

k=1

n+1
∑

j=i

�kj�
2
ij −

( i
∑

k=1

n+1
∑

j=i

�kj�ij

))

+ 4Mi1 − si5
i
∑

k=1

n+1
∑

j=i

�kj�ij 0

Recall that �i = Mi1 and �i =
√
Mi2 −M2

i1. Then the
Lagrangian dual of problem (20) is (22). Therefore, the lemma
follows if strong duality holds for this pair of primal and
dual problems. By Bazaraa et al. (2006), this is indeed the
case, because problem (20) is convex, and it is clear that
there exists a feasible solution such that all the inequality
constraints hold as strict inequalities. �

Proof of Lemma 3
Notice that for any i = 11 0 0 0 1 n, the quantity �i + 44�i1n+1/2 −

�5/
√

��i1n+1 − 4�525�i is strictly decreasing in � in the interval
401�i1n+15. Therefore, it must also be strictly decreasing in
interval 401�5, because �i1n+1 ≥�n1n+1 = �.

Moreover, for i = n, the function �n + 44�n1n+1/2 −

�5/
√

��n1n+1 − 4�525�n approaches � when � is close to zero,
and −� when � is close to �n1n+1 = �. Therefore, there exists
a unique � ∈ 401�5 such that Equation (23) holds.

Furthermore, it is easy to verify that the objective
function of problem (24) is continuous and concave in
401�5. Its first derivative is given by

∑n
i=14�i + 44�i1n+1/2 −

�5/
√

��i1n+1 − 4�525�i − T 5. Therefore, �∗ given by (23) sat-
isfies the first-order condition of problem (24). Thus, it is
also the optimal solution to problem (24) because of its
concavity. �
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Proof of Theorem 2
For simplicity, we rewrite problem (20) as

max
Ä∈ã

min
s∈S

g4s1Ä51 (48)

where the function g4s1Ä5 is defined as

g4s1Ä5 =

n
∑

i=1

(

�i

√

i
∑

k=1

n+1
∑

j=i

�2
ij�kj −

( i
∑

k=1

n+1
∑

j=i

�ij�kj

)2

+ 4�i − si5
i
∑

k=1

n+1
∑

j=i

�ij�kj

)

0

By the saddle point theorem, Theorem 2 follows from the
following claims.

Claim 1. s∗ is an optimal solution to problem mins∈S g4s1Ä∗5.

Claim 2. Ä∗ is an optimal solution to problem maxÄ∈ã g4s∗1Ä5.

Claim 3. It holds that

g4s∗1Ä∗5=

n
∑

i=1

(

�i

√

�i1n+1�
∗
− 4�∗52

)

+�∗

n
∑

i=1

�i −�∗T 0

We first prove Claims 1 and 3. By definition of s∗ and the
assumption of Proposition 2, we have s∗ ≥ 0. Moreover, the
definitions of �∗

i and �∗ imply that
∑n

i=1 s
∗
i = T . Therefore

s∗ ∈S; that is, s∗ is feasible to problem mins∈S g4s1Ä∗5. We
next prove the optimality of s∗. For each i = 1121 0 0 0 1n, by
definition of Ä∗ and the fact �ii = 0, we have that

i
∑

k=1

n+1
∑

j=i

�2
ij�

∗

kj =

i
∑

k=1

�2
i1n+1�

∗

k1n+1 =�i1n+1�
∗

and
i
∑

k=1

n+1
∑

j=i

�ij�
∗

kj =

i
∑

k=1

�i1n+1�
∗

k1n+1 = �∗0

This, together with the definition of the function g, implies

g4s1Ä∗5 =

n
∑

i=1

(

�i

√

√

√

√

i
∑

k=1

n+1
∑

j=i

�2
ij�

∗
kj −

( i
∑

k=1

n+1
∑

j=i

�ij�
∗
kj

)2

+4�i−si5
i
∑

k=1

n+1
∑

j=i

�ij�
∗

kj

)

=

n
∑

i=1

(

�i

√

�i1n+1�
∗ −4�∗52 +4�i−si5�

∗

)

=

n
∑

i=1

(

�i

√

�i1n+1�
∗ −4�∗52

)

+�∗

n
∑

i=1

�i−�∗

n
∑

i=1

si

≥

n
∑

i=1

(

�i

√

�i1n+1�
∗ −4�∗52

)

+�∗

n
∑

i=1

�i−�∗T for s∈S0

However, the inequality above holds as an equality when
s= s∗ because

∑n
i=1 s

∗
i = T . Thus, s∗ minimizes the function

g4s1Ä∗5 in the feasible set S. This completes the proof of
Claims 1 and 3.

We now prove Claim 2. First, we show that Ä∗ ∈ã. The
fact that Ä∗ ≥ 0 follows from its definition and 0 < �∗ <

� ≤�i1n+1 <�i−11n+1 for any i = 21 0 0 0 1n. Moreover, for any
i = 11 0 0 0 1n,

i
∑

k=1

n+1
∑

j=i

�∗

kj = �∗

ii +

i
∑

k=1

�∗

k1n+1 = 10

Thus, Ä∗ is a feasible solution to problem maxÄ∈ã g4s∗1Ä5.
To prove optimality of Ä∗, we notice that by definition of

g and s∗,

g4s∗1Ä5 =

n
∑

i=1

�i

(

√

i
∑

k=1

n+1
∑

j=i

�2
ij�kj −

( i
∑

k=1

n+1
∑

j=i

�ij�kj

)2

−�∗

i

i
∑

k=1

n+1
∑

j=i

�ij�kj

)

0

Now we introduce new variables � such that for any i ≤ j ,

�ij =

i
∑

k=1

�kj 0 (49)

Equation (49) also implies that

�1j = �1j for j = 11 0 0 0 1n+ 13
�ij = vi1 j − vi−11 j for i = 21 0 0 0 1n1 j = i1 0 0 0 1n+ 10

(50)

With the one-to-one correspondence between Ó and Ä, it is
easy to see that the problem maxÄ∈ã g4s∗1Ä5 is equivalent to

min
n
∑

i=1

�i

(

√

n+1
∑

j=i

�2
ij�ij −

(n+1
∑

j=i

�ij�ij

)2

−�∗

i

n+1
∑

j=i

�ij�ij

)

(51)

s.t.
n+1
∑

j=i

�ij =1 for i=110001n3 (52)

�ij ≥�i−11 j for i=210001n1 and j= i10001n3 (53)

�ij ≥0 for i=110001n1 and j= i10001n0 (54)

Also, we can define Ó∗ according to (49) as

�∗

i1n+1 =

i
∑

k=1

�∗

k1n+1 =
�∗

�i1n+1
1

�∗

ii =

i
∑

k=1

�∗

ki = 1 −
�∗

�i1n+1
for i = 11 0 0 0 1n1

�∗

ij = 0 for i < j ≤ n0

(55)

Therefore, to show Ä∗ is optimal to problem maxÄ∈ã g4s∗1Ä5,
it suffices to prove Ó∗ is optimal to problem (51), where
the constraints are (52), (53), and (54). It is obvious that Ó∗

satisfies all three constraints.
In what follows, we prove a stronger result that Ó∗ is

even optimal to problem (51) with constraints (52) and (54)
only, i.e., constraint (53) is removed. However, the relaxed
problem can be decomposed into n independent subproblems.
Indeed, we need only to show that, for each i = 11 0 0 0 1n,
4�∗

ij 2 j = i1 0 0 0 1n+ 15 is optimal to problem

min �i







√

√

√

√

n+1
∑

j=i

�2
ij�ij −

(

n+1
∑

j=i

�ij�ij

)2

−�∗

i

n+1
∑

j=i

�ij�ij







s.t.
n+1
∑

j=i

�ij = 11

�ij ≥ 0 for j = i1 0 0 0 1n0

(56)
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This problem has the form of the problem analyzed in Lemma
8. Therefore, by Lemma 8, an optimal solution to problem (5)
is given by

�ii =
1
2

+
�∗
i

2
√

1 + 4�∗
i 5

2
1 �i1n+1 =

1
2

−
�∗
i

2
√

1 + 4�∗
i 5

2
1

�ij = 0 for i < j ≤ n0

Substituting �∗
i with 44�i1n+1/2 −�∗5/

√

�∗�i1n+1 − 4�∗525, we
obtain

�ii = 1−�∗/�i1n+11 �i1n+1 = �∗/�i1n+11 �ij = 0 for i < j ≤ n0

Thus, 4�∗
ij 2 j = i1 0 0 0 1n+ 15 is optimal to problem (5) for any

i = 11 0 0 0 1n. This completes the proof. �

Proof of Proposition 3
From the definition of p̃∗, the marginal distribution of p̃∗

i is

p̃∗

i =































































�i −
�i

√

�i1n+1�
∗ − 4�∗52

4�∗
−�i1n+15

with probability
i
∑

�=1

�� =
�∗

�i1n+1
1

�i −
�i

√

�i1n+1�
∗ − 4�∗52

�∗

with probability
n+1
∑

�=i+1

�� = 1 −
�∗

�i1n+1
0

It is easy to verify that E6p̃∗
i 7=�i and E64p̃∗

i 5
27=�2

i +�2
i ;

that is, p̃∗ is a feasible solution to the moment problem (10),
i.e., a feasible distribution in F4�n1 811295 for a given Ì and
Ñ. In what follows, we prove that p̃∗ is indeed a worst-case
distribution, i.e., an optimal solution to the moment prob-
lem (10). By Theorem 3, it is sufficient to prove E6f 4s∗1 p̃∗57=
∑n

i=14�i

√

�i1n+1�
∗ − 4�∗52 +�i�

∗5−�∗T , which implies that
E6f 4s∗1 p̃∗57 is equal to the worst-case cost. Therefore, p̃∗ is
the worst-case distribution under s∗.

To see this, we first observe that Y� ∈å for any �, i.e., it is
a feasible solution to (8). Then it follows that

E6f 4s∗1 p̃∗57 ≥ E�

[ n
∑

i=1

4P�i − s∗

i 5Y�i

]

0

On the other hand,

E�

[ n
∑

i=1

4P�i − s∗

i 5Y�i

]

=

n+1
∑

�=1

n
∑

i=1

44P�i − 4�i +�∗

i �i55Y�i5��

=

n
∑

i=1

n+1
∑

�=1

(

�iY�i −
�i

√

�i1n+1�
∗ − 4�∗52

4�∗Y�i −Y 2
�i5

− 4�i +�∗

i �i5Y�i

)

��

=

n
∑

i=1

(

�i

√

�i1n+1�
∗ − 4�∗52 +�i�

∗

)

−�∗T 0

The last equality follows from
∑n+1

�=1 Y�i�� = �∗ and
∑n

i=14�i +

�∗
i �i5= T . This completes the proof. �

Proof of Theorem 3
For any sequence �, we have

G4�5= min
∑n

i=1 si≤T 1 s≥0
max

F∈F4�n1 811295
EF6f 4s1 p̃�570

However, by Theorem 2 and the discussion following it, we
get

min
∑n

i=1 si≤T
max

F∈F4�n1 811295
EF6f 4s1 p̃�57

=

n
∑

i=1

(

��i

√

�i1n+1�� − 4��5
2 +��i

��

)

−��T 0

The equality holds even without assuming

��i
+

�i1n+1/2 −��
√

��∗�i1n+1 − 4��∗ 52
��i

≥ 01

because we relax the constraint s≥ 0. It follows that

G4�5≥

n
∑

i=1

(

��i

√

�i1n+1�� − 4��5
2 +��i

��

)

−��T 0

On the other hand, if

�i +
�i1n+1/2 −��∗

√
��∗�i1n+1 − 4��∗ 52

�i ≥ 0 for all i = 11 0 0 0 1n1

Theorem 2 leads to

G4�∗5=

n
∑

i=1

(

�i

√

�i1n+1��∗ − 4��∗ 52 +�i��∗

)

−��∗T 0

Therefore, to prove Theorem 3, it is sufficient to show
n
∑

i=1

(

��i

√

�i1n+1�� − 4��5
2 +��i

��

)

−��T

≥

n
∑

i=1

(

��i

√

�i1n+1��∗ − 4��∗ 52 +��i
��∗

)

−��∗T

≥

n
∑

i=1

(

�i

√

�i1n+1��∗ − 4��∗ 52 +�i��∗

)

−��∗T 0

The first inequality follows from Lemma 3, that �� is the
maximizer of

∑n
i=14��i

√

�i1n+1�−�2 +��i
�5−�T . The second

inequality follows from Lemma 4 and the assumption that �i

is increasing in i. This completes the proof. �
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